【題目】為了慶祝中華人民共和國成立70周年,某市決定開展“我和祖國共成長”主題演講比賽,某中學將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數(shù)且無滿分,最低為75分)分成五組,并繪制了下列不完整的統(tǒng)計圖表.
分數(shù)段 | 頻數(shù) | 頻率 |
74.5~79.5 | 2 | 0.05 |
79.5~84.5 | m | 0.2 |
84.5~89.5 | 12 | 0.3 |
89.5~94.5 | 14 | n |
94.5~99.5 | 4 | 0.1 |
(1)表中m= ,n= ;
(2)請在圖中補全頻數(shù)直方圖;
(3)甲同學的比賽成績是40位參賽選手成績的中位數(shù),據(jù)此推測他的成績落在 分數(shù)段內(nèi);
(4)選拔賽中,成績在94.5分以上的選手,男生和女生各2人,學校從中隨機確定2名選手參加全市決賽,恰好是一名男生和一名女生的概率是 .
【答案】(1)m=8, n=0.35;(2)詳見解析;(3)84.5~89.5;(4)
【解析】
(1)根據(jù)頻率=頻數(shù)÷總數(shù)求解可得;
(2)根據(jù)所求結(jié)果即可補全圖形;
(3)根據(jù)中位數(shù)的概念求解可得;
(4)首先根據(jù)題意畫出樹狀圖,然后由表格即可求得所有等可能的結(jié)果與挑選的兩位學生恰好是一男一女的情況,再利用概率公式求解即可求得答案.
解:(1)m=40×0.2=8,n=14÷40=0.35,
故答案為:8,0.35;
(2)補全圖形如下:
(3)由于40個數(shù)據(jù)的中位數(shù)是第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在84.5~89.5,
∴測他的成績落在分數(shù)段84.5~89.5內(nèi),
故答案為:84.5~89.5.
(4)選手有4人,2名是男生,2名是女生.
,
恰好是一名男生和一名女生的概率為:.
科目:初中數(shù)學 來源: 題型:
【題目】中國古代有著輝煌的數(shù)學成就,《周髀算經(jīng)》,《九章算術(shù)》,《海島算經(jīng)》,《孫子算經(jīng)》等是我國古代數(shù)學的重要文獻.
(1)小聰想從這4部數(shù)學名著中隨機選擇1部閱讀,則他選中《九章算術(shù)》的概率為 ;
(2)某中學擬從這4部數(shù)學名著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,求恰好選中《九章算術(shù)》和《孫子算經(jīng)》的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某城市綠化工程進行招標,現(xiàn)有甲、乙兩個工程隊投標,已知甲隊單獨完成這項工程需要60天.經(jīng)測算:如果甲隊先做20天,再由甲隊、乙隊合作12天,那么此時共完成總工作量的.
(1)乙隊單獨完成這項工程需要多少天?
(2)甲隊施工一天需付工程款4.5萬元,乙隊施工一天需付工程款2萬元,該工程由甲乙兩隊合作若干天后,再由乙隊完成剩余的工作,若要求完成此項工程的工程款不超過186萬元,求甲、乙兩隊最多合作多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=-x+1的圖象與反比例函數(shù)的圖象有一個交點是A(-1,n).
(1)求反比例函數(shù)的解析式;
(2)M(d,),N(d,)分別是一次函數(shù)和反比例函數(shù)圖象上的兩點,若,求d的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD,AE⊥BC交點E,連接DE,F(xiàn)為DE上一點,且∠AFE=∠B=60°.
(1)求證:△ADF∽△DEC;
(2)若AE=3,AD=4,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,D,E是半圓上任意兩點,連結(jié)AD,DE,AE與BD相交于點C,要使△ADC與△ABD相似,可以添加一個條件.下列添加的條件其中錯誤的是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一段6000米的道路由甲乙兩個工程隊負責完成.已知甲工程隊每天完成的工作量是乙工程隊每天完成工作量的2倍,且甲工程隊單獨完成此項工程比乙工程隊單獨完成此項工程少用10天.
(1)求甲、乙兩工程隊每天各完成多少米?
(2)如果甲工程隊每天需工程費7000元,乙工程隊每天需工程費5000元,若甲隊先單獨工作若干天,再由甲乙兩工程隊合作完成剩余的任務(wù),支付工程隊總費用不超過79000元,則兩工程隊最多可以合作施工多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“凈揚”水凈化有限公司用160萬元,作為新產(chǎn)品的研發(fā)費用,成功研制出了一種市場急需的小型水凈化產(chǎn)品,已于當年投入生產(chǎn)并進行銷售.已知生產(chǎn)這種小型水凈化產(chǎn)品的成本為4元/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量(萬件)與銷售價格x(元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一部分,BC為一次函數(shù)圖象的一部分.設(shè)公司銷售這種水凈化產(chǎn)品的年利潤為z(萬元).(注:若上一年盈利,則盈利不計入下一年的年利潤;若上一年虧損,則虧損計作下一年的成本.)
(1)請求出y(萬件)與x(元/件)之間的函數(shù)關(guān)系式;
(2)求出第一年這種水凈化產(chǎn)品的年利潤z(萬元)與x(元/件)之間的函數(shù)關(guān)系式,并求出第一年年利潤的最大值;
(3)假設(shè)公司的這種水凈化產(chǎn)品第一年恰好按年利潤z(萬元)取得最大值時進行銷售,現(xiàn)根據(jù)第一年的盈虧情況,決定第二年將這種水凈化產(chǎn)品每件的銷售價格x(元)定在8元以上(),當?shù)诙甑哪昀麧櫜坏陀?/span>103萬元時,請結(jié)合年利潤z(萬元)與銷售價格x(元/件)的函數(shù)示意圖,求銷售價格x(元/件)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,為坐標原點,的邊垂直軸于點,反比例函數(shù)的圖象經(jīng)過的中點,與邊相交于點,.
(1)求反比例函數(shù)的解析式;
(2)求的值;
(3)經(jīng)過、兩點的直線的解析式是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com