【題目】如圖,平行四邊形ABCD的對角線AC,BD交于O,EF過點OAD,BC分別交于E,F,若AB4,BC5OE1.5,則四邊形EFCD的周長_____

【答案】12

【解析】

根據(jù)平行四邊形的性質(zhì)知,ABCD4,ADBC5AOOC,∠OAD=∠OCF,∠AOE和∠COF是對頂角相等,所以OAE≌△OCF,所以OFOE1.5,CFAE,所以四邊形EFCD的周長=ED+CD+CF+OF+OEED+AE+CD+OE+OFAD+CD+OE+OF,由此就可以求出周長.

解:∵四邊形ABCD平行四邊形,

ABCD4,ADBC5,AOOC,∠OAD=∠OCF,∠AOE=∠COF,

∴△OAE≌△OCF,

OFOE1.5,CFAE,

∴四邊形EFCD的周長=ED+CD+CF+OF+OE

ED+AE+CD+OE+OF

AD+CD+OE+OF

4+5+1.5+1.5

12

故答案為:12

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,直線分別與軸、軸交于點、,且與直線交于點,以線段為邊在直線的下方作正方形,此時點恰好落在軸上.

1)求出三點的坐標.

2)求直線的函數(shù)表達式.

3)在(2)的條件下,點是射線上的一個動點,在平面內(nèi)是否存在點,使得以、、為頂點的四邊形是菱形?若存在,直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮計劃暑期結(jié)伴參加志愿者活動.小明想?yún)⒓泳蠢戏⻊栈顒樱×料雲(yún)⒓游拿鞫Y儀宣傳活動.他們想通過做游戲來決定參加哪個活動,于是小明設(shè)計了一個游戲,游戲規(guī)則是:在三張完全相同的卡片上分別標記4、5、6三個數(shù)字,一人先從三張卡片中隨機抽出一張,記下數(shù)字后放回,另一人再從中隨機抽出一張,記下數(shù)字,若抽出的兩張卡片標記的數(shù)字之和為偶數(shù),則按照小明的想法參加敬老服務活動,若抽出的兩張卡片標記的數(shù)字之和為奇數(shù),則按照小亮的想法參加文明禮儀宣傳活動.你認為這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD,點EBA延長線上,點FBC上,且∠CDE2ADF

1)求證:∠E2CDF;

2)若FBC中點,求證:AE+DE2AD

3)作AGDF于點G,連CG.當CG取最小值時,直接寫出AEAB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在六邊形中,,分別平分,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC、BD相交于點O,OAC的中點,AB//DC,AC=10,BD=8.

(1)求證:四邊形ABCD是平行四邊形;

(2)若ACBD,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形 OABC,O 為坐標原點,已知 A(4,0)、C(0,2),D 為邊 OA 的中點,連接 BD,M 點與 C 點重合,N x 軸上一點,MNBD, 直線 MN 沿著 x 軸向右平移.

(1)當四邊形 MBDN 為菱形時N 點的坐標是 ;

(2) MN 平移到何處時,恰好將四邊形 ODBC 的面積為 1:3 的兩部分?請求出此時直線 MN 的解析式;

(3)在(1)的條件下,在矩形 OABC 的四條邊上,是否存在點 F,連接 DF, 將矩形沿著 DF 所在的直線翻折,使得點 O 恰好落在直線 MN 上,若存在, 求出 F 點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形中,,垂足為點,

(1)如圖1,求證:;

(2)如圖2,點上一點,連接,,求證:;

(3)(2)的條件下,如圖3,點上一點,連接,點的中點,分別連接,,,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F

1)求證:OEOF

2)若CE8,CF6,求OC的長;

3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

同步練習冊答案