【題目】如圖1,△ABC和△CDE都是等邊三角形,且點(diǎn)AC、E在一條直線上,ADBE交于點(diǎn)O,ADBC交于點(diǎn)P,CDBE交于點(diǎn)Q,連接PQ

1)求證:ADBE

2)∠AOB的度數(shù)為   ;PQAE的位置關(guān)系是   ;

3)如圖2,△ABC固定,將△CDE繞點(diǎn)C按順時(shí)針(或逆時(shí)針)方向旋轉(zhuǎn)任意角度α,在旋轉(zhuǎn)過(guò)程中,(1)中的結(jié)論是否總成立?∠AOB的度數(shù)是否改變?并說(shuō)明理由.

【答案】1)見(jiàn)解析;(260°,PQAE;(3)在旋轉(zhuǎn)過(guò)程中,(1)中的結(jié)論總成立,∠AOB的度數(shù)不會(huì)改變,見(jiàn)解析

【解析】

1)根據(jù)等邊三角形性質(zhì)得出ACBCCECD,∠ACB=∠ECD60°,求出∠BCE=∠ACD,根據(jù)SAS推出兩三角形全等即可;

2)由三角形的外角性質(zhì),可得∠AOB=∠BEA+DAC,∠ACB=∠EBC+BEA,則∠AOB=∠ACB60°,證明∠QPC=∠BCA,可得PQAE;

3)證明△ACD≌△BCESAS),得到ADBE,∠DAC=∠EBC,根據(jù)∠BOA180°﹣∠ABO﹣∠BAO180°﹣∠ABC﹣∠BAC,即可解答.

1)證明:∵△ABC和△CDE為等邊三角形,

ACBC,CDCE,∠BCA=∠DCE60°,

∴∠ACD=∠BCE,

在△ACD和△BCE中,

ACBC,∠ACD=∠BCE,CDCE,

∴△ACD≌△BCESAS),

ADBE

2)∵△ACD≌△BCE,

∴∠DAC=∠EBC,

由三角形的外角性質(zhì),∠AOB=∠BEA+DAC,

ACB=∠EBC+BEA,

∴∠AOB=∠ACB60°;

∵∠DCP60°=∠ECQ,

∴在△CDP和△CEQ中,

ADC=∠BEC,CDCE,∠DCP=∠ECQ,

∴△CDP≌△CEQASA).

CPCQ,

∴∠CPQ=∠CQP60°,△PCQ是等邊三角形,

∴∠QPC=∠BCA

PQAE;

故答案為:60°,PQAE;

3)在旋轉(zhuǎn)過(guò)程中,(1)中的結(jié)論總成立,∠AOB的度數(shù)不會(huì)改變,理由如下:

∵△ABC和△CDE都是等邊三角形,

ACBC,CDCE,∠ACB=∠DCE60°,

∴∠ACB+BCD=∠DCE+BCD,

即∠ACD=∠BCE,

在△ACD和△BCE中,

AC=BC,∠ACD=BCECD=CE,

∴△ACD≌△BCESAS),

ADBE,∠DAC=∠EBC,

∴∠BOA180°﹣∠ABO﹣∠BAO180°﹣∠ABC﹣∠BAC60°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上的點(diǎn)A、B、C、D、E表示連續(xù)的五個(gè)整數(shù),對(duì)應(yīng)數(shù)分別為a、b、c、d、e.

(1)若a+e=0,則代數(shù)式b+c+d=  

(2)若a是最小的正整數(shù),先化簡(jiǎn),再求值:;

(3)若a+b+c+d=2,數(shù)軸上的點(diǎn)M表示的實(shí)數(shù)為m(ma、b、c、d、e不同),且滿足MA+MD=3,則m的范圍是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)C是弧BD的中點(diǎn),CE⊥AB于點(diǎn)F.

(1)求證:BF=CF;

(2)若CD=3cm,AC=4cm,求⊙O的半徑及CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,是原點(diǎn),的角平分線.

確定所在直線的函數(shù)表達(dá)式;

在線段上是否有一點(diǎn),使點(diǎn)軸和軸的距離相等,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

在線段上是否有一點(diǎn),使點(diǎn)到點(diǎn)和點(diǎn)的距離相等,若存在,直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20169月,某手機(jī)公司發(fā)布了新款智能手機(jī),為了調(diào)查某小區(qū)業(yè)主對(duì)該款手機(jī)的購(gòu)買意向,該公司在某小區(qū)隨機(jī)對(duì)部分業(yè)主進(jìn)行了問(wèn)卷調(diào)查,規(guī)定每人只能從A類(立刻去搶購(gòu))、B類(降價(jià)后再去買)、C類(猶豫中)、D類(肯定不買)這四類中選一類,并制成了以下兩幅不完整的統(tǒng)計(jì)圖,由圖中所給出的信息解答下列問(wèn)題:

(1)扇形統(tǒng)計(jì)圖中B類對(duì)應(yīng)的百分比為   %,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)若該小區(qū)共有4000人,請(qǐng)你估計(jì)該小區(qū)大約有多少人立刻去搶購(gòu)該款手機(jī).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.

在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長(zhǎng)線上,且ED=EC,如圖.試確定線段AE與DB的大小關(guān)系,并說(shuō)明理由.

小敏與同桌小聰討論后,進(jìn)行了如下解答:

(1)特殊情況,探索結(jié)論

當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線段AE與的DB大小關(guān)系.請(qǐng)你直接寫(xiě)出結(jié)論:

AE DB(填“>”,“<”或“=”).

圖1 2

(2)特例啟發(fā),解答題目

解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).

理由如下:如圖2,過(guò)點(diǎn)E作EFBC,交AC于點(diǎn)F.

(請(qǐng)你完成以下解答過(guò)程)

(3)拓展結(jié)論,設(shè)計(jì)新題

在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC.若ABC的邊長(zhǎng)為1,AE=2,求CD的長(zhǎng)(請(qǐng)你直接寫(xiě)出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=kx+bx軸于點(diǎn)A,交y軸于點(diǎn)B,直線y=2x4x軸于點(diǎn)D,與直線AB相交于點(diǎn)C3,2).

1)根據(jù)圖象,寫(xiě)出關(guān)于x的不等式2x4kx+b的解集;

2)若點(diǎn)A的坐標(biāo)為(5,0),求直線AB的解析式;

3)在(2)的條件下,求四邊形BODC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分8分)某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷市場(chǎng),就用13200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.

1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?

2)若兩批襯衫按相同的標(biāo)價(jià)銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤(rùn)率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案