【題目】(1)問題發(fā)現(xiàn)
如圖1,在Rt△ABC中,∠A=90°,=1,點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接 CD.
(1)①求的值;②求∠ACD的度數(shù).
(2)拓展探究
如圖 2,在Rt△ABC中,∠A=90°,=k.點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD,請(qǐng)判斷∠ACD與∠B 的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說明理由.
(3)解決問題
如圖 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若 PA=5,請(qǐng)直接寫出CD的長(zhǎng).
【答案】(1)1,45°;(2)∠ACD=∠B, =k;(3).
【解析】
(1)根據(jù)已知條件推出△ABP≌△ACD,根據(jù)全等三角形的性質(zhì)得到PB=CD,∠ACD=∠B=45°,于是得到
根據(jù)已知條件得到△ABC∽△APD,由相似三角形的性質(zhì)得到,得到 ABP∽△CAD,根據(jù)相似三角形的性質(zhì)得到結(jié)論;
過A作AH⊥BC 于 H,得到△ABH 是等腰直角三角形,求得 AH=BH=4, 根據(jù)勾股定理得到根據(jù)相似三角形的性質(zhì)得到 ,推出△ABP∽△CAD,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
(1)∵∠A=90°,
∴AB=AC,
∴∠B=45°,
∵∠PAD=90°,∠APD=∠B=45°,
∴AP=AD,
∴∠BAP=∠CAD,
在△ABP 與△ACD 中,
AB=AC, ∠BAP=∠CAD,AP=AD,
∴△ABP≌△ACD,
∴PB=CD,∠ACD=∠B=45°,
∴=1,
(2)
∵∠BAC=∠PAD=90°,∠B=∠APD,
∴△ABC∽△APD,
∵∠BAP+∠PAC=∠PAC+∠CAD=90°,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴∠ACD=∠B,
(3)過 A 作 AH⊥BC 于 H,
∵∠B=45°,
∴△ABH 是等腰直角三角形,
∵
∴AH=BH=4,
∵BC=12,
∴CH=8,
∴
∴PH==3,
∴PB=1,
∵∠BAC=∠PAD=,∠B=∠APD,
∴△ABC∽△APD,
∴,
∵∠BAP+∠PAC=∠PAC+∠CAD,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴即
∴
過 A 作 AH⊥BC 于 H,
∵∠B=45°,
∴△ABH 是等腰直角三角形,
∵
∴AH=BH=4,
∵BC=12,
∴CH=8,
∴
∴PH==3,
∴PB=7,
∵∠BAC=∠PAD=,∠B=∠APD,
∴△ABC∽△APD,
∴,
∵∠BAP+∠PAC=∠PAC+∠CAD,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴即
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車清洗店,清洗一輛汽車定價(jià)20元時(shí)每天能清洗45輛,定價(jià)25元時(shí)每天能清洗30輛,假設(shè)清洗汽車輛數(shù)(輛)與定價(jià)(元)(取整數(shù))是一次函數(shù)關(guān)系(清洗每輛汽車成本忽略不計(jì)).
(1)求與之間的函數(shù)表達(dá)式;
(2)若清洗一輛汽車定價(jià)不低于15元且不超過50元,且該汽車清洗店每天需支付電費(fèi)、水費(fèi)和員工工資共計(jì)200元,問:定價(jià)為多少時(shí),該汽車清洗店每天獲利最大?最大獲利多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從二次函數(shù)y=ax2+bx+c的圖象(如圖)中觀察得到了下面五條信息:①abc>0 ; ②2a﹣3b=0 ; ③b2﹣4ac>0;④a+b+c>0; ⑤4b<c.則其中結(jié)論正確的個(gè)數(shù)是( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A、C為圓心,以大于AC的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)D和E,作直線DE交AB于點(diǎn)F,交AC于點(diǎn)G,連接CF,以點(diǎn)C為圓心,以CF的長(zhǎng)為半徑畫弧,交AC于點(diǎn)H.若∠A=30°,BC=2,則AH的長(zhǎng)是( )
A. B. 2C. +1D. 2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知和B點(diǎn),點(diǎn)C是的中點(diǎn),點(diǎn)P在x軸上,若以P、A、C為頂點(diǎn)的三角形與相似,那么點(diǎn)P的坐標(biāo)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公園要建造一個(gè)圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個(gè)噴頭向外噴水.連噴頭在內(nèi),柱高0.8m.水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,如圖(1)所示.
根據(jù)設(shè)計(jì)圖紙已知:如圖(2)中所示直角坐標(biāo)系中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是 y=﹣x2+2x+.
(1)噴出的水流距水平面的最大高度是多少?
(2)如果不計(jì)其他因素,那么水池半徑至少為多少時(shí),才能使噴出的水流都落在水池內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,的直徑為,弦為,的平分線交于E,且.
(1)求,,的長(zhǎng)
(2)圖中還有一條線段的長(zhǎng)是否能確定,若能求出的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【閱讀理解】
某科技公司生產(chǎn)一種電子產(chǎn)品,該產(chǎn)品總成本包括技術(shù)成本、制造成本、銷售成本三部分。經(jīng)核算,2016年該產(chǎn)品各部分成本所占比例約為2:a:1,且2016年該產(chǎn)品的技術(shù)成本、制造成本分別為400萬元、1400萬元。
(1)確定a的值,并求2016年產(chǎn)品總成本為多少萬元。
(2)為降低總成本,該公司2017年及2018年增加了技術(shù)投入,確保這兩年技術(shù)成本都比前一年增加一個(gè)相同的百分?jǐn)?shù)m(m<50%),制造成本在這兩年里都比前一年減少一個(gè)相同的百分?jǐn)?shù)2m;同時(shí)為了擴(kuò)大銷售量,2018年的銷售成本將在2016年的基礎(chǔ)上提高10%,經(jīng)過以上變革,預(yù)計(jì)2018年該產(chǎn)品總成本達(dá)到2016年該產(chǎn)品總成本的。求m的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com