【題目】如圖,在菱形ABCD中,∠BAD=120°,點E、F分別在邊AB、BC上,△BEF與△GEF關于直線EF對稱,點B的對稱點是G,且點G在邊AD上,若EG⊥AC,AB=2,則FG的長為

【答案】
【解析】解:∵四邊形ABCD是菱形,∠BAD=120°, ∴AB=BC=CD=AD,∠CAB=∠CAD=60°,
∴△ABC,△ACD是等邊三角形,
∵EG⊥AC,
∴∠AEG=∠AGE=30°,
∵∠B=∠EGF=60°,
∴∠AGF=90°,
∴FG⊥BC,
∴2SABC=BCFG,
∴2× ×(2)2=2FG,
∴FG=
故答案為
首先證明△ABC,△ADC都是等邊三角形,再證明FG是菱形的高,根據(jù)2SABC=BCFG即可解決問題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解九年級學生的體能情況,抽調(diào)了一部分學生進行一分鐘跳繩測試,將測試成績整理后作出如圖所示的統(tǒng)計圖. 甲同學計算出前兩組的頻率和是0.12,乙同學計算出跳繩次數(shù)不少于100次的同學占96%,丙同學計算出從左至右第二、三、四組的頻數(shù)的比為41715,則本次測試共抽調(diào)的人數(shù)為( )

A. 120 B. 150 C. 180 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E為邊AB的中點,將△CBE沿CE翻折得到△CFE,連接AF.若∠EAF=70°,那么∠BCF=度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AC=BC,ACB=90°,點 D,E分別在AB,BC上,且AD=BE,BD=AC,過EEFABF.

(1)求證:FED=CED;

(2) BF=,直接寫出 CE的長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y= x2經(jīng)過點A(x1 , y1)、C(x2 , y2),其中x1、x2是方程x2﹣2x﹣8的兩根,且x1<x2 , 過點A的直線l與拋物線只有一個公共點

(1)求A、C兩點的坐標;
(2)求直線l的解析式;
(3)如圖2,點B是線段AC上的動點,若過點B作y軸的平行線BE與直線l相交于點E,與拋物線相交于點D,過點E作DC的平行線EF與直線AC相交于點F,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市三景區(qū)是人們節(jié)假日游玩的熱點景區(qū),某學校對九(1)班學生“五一”小長假隨父母到這三個景區(qū)游玩的計劃做了全面調(diào)查,調(diào)查分四個類別,A:三個景區(qū);B:游兩個景區(qū);C:游一個景區(qū);D:不到這三個景區(qū)游玩,現(xiàn)根據(jù)調(diào)查結果繪制了不完全的條形統(tǒng)計圖和扇形統(tǒng)計圖如下:
請結合圖中信息解答下列問題:
(1)九(1)班現(xiàn)有學生人,在扇形統(tǒng)計圖中表示“B類別”的扇形的圓心角的度數(shù)為;
(2)請將條形統(tǒng)計圖補充完整;
(3)若該校九年級有1000名學生,求計劃“五一”小長假隨父母到這三個景區(qū)游玩的學生多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商場將一批學生書包按成本價提高50%后標價,又按標價的80%優(yōu)惠賣出,每個的售價是72元.每個這種書包的成本價是多少元?利潤是多少元?利潤率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①是一種竹涼席,它是由規(guī)格為1.4 cm×3 cm的小竹片按橫、豎方向編織而成的.如圖②是這種規(guī)格的涼席橫向組成部分的一條鏈形,每相鄰兩個小竹片的長邊互相平行,且間距為0.5 cm(如圖③)

(1)5個小竹片組成的鏈形長為_____cm

(2)n個小竹片組成的鏈形長為____cm;

(3)如果此種竹涼席的長為1.99 m,那么一條鏈形中有小竹片多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,2條直線相交有1個交點,3條直線相交最多有3個交點,4條直線相交最多有6個交點…按這樣的規(guī)律若n條直線相交交點最多有28個,則此時n的值為( 。

A. 18 B. 10 C. 8 D. 7

查看答案和解析>>

同步練習冊答案