已知:如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經(jīng)過B,M兩點的⊙O交BC于點G,交AB于點F,FB恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當BC=4,cosC=時,求⊙O的半徑.
解:(1) 連接OM,則OM=OB
∴∠OBM=∠OMB
∵BM平分∠ABC
∴∠OBM=
∴∠OMB=∠EBM
∴OM∥BE
∴∠AMO=∠AEB
而在⊿ABC中,AB=AC,AE是角平分線
∴AE⊥BC
∴∠AMO=∠AEB=90°
∴AE與⊙O相切. ------------ 4分
(2) 在⊿ABC中,AB=AC,AE是角平分線
∴BE=BC=2,∠ABC=∠ACB
∴在Rt⊿ABC中cos∠ABC=cos∠ACB==
∴AB=6 --------------2分
設⊙O的半徑為r,則AO=6-r
∵OM∥BC
∴△AOM∽△ABE
∴= 即 =
∴r= --------------4分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com