【題目】如圖,正方形ABCD的邊長是4,點(diǎn)EBC的中點(diǎn),連接DE,DFDEBA的延長線于點(diǎn)F.連接EF、AC,DEEF分別與C交于點(diǎn)P、Q,則PQ_____

【答案】

【解析】

過點(diǎn)EEMAB,交AC于點(diǎn)M,由題意可證MEABCD,ADF≌△CDE,可得AFCEME,根據(jù)平行線分線段成比例可得,,即可求PQ的長.

如圖,過點(diǎn)EEMAB,交AC于點(diǎn)M,

∵四邊形ABCD是正方形

ADCDBC4,∠ADC=∠DAB=∠DCE90°,∠ACE45°,ABCD,

∴∠CDE+ADE90°,AC4

DFDE

∴∠FDA+ADE90°

∴∠CDE=∠FDA,且∠DAF=∠DCE90°ADCD,

∴△ADF≌△CDEAAS

AFCE

∵點(diǎn)EBC中點(diǎn),

CEBEBCAF,

MECD

∴∠DCE=∠MEB90°,且∠ACB45°

∴∠CME=∠ACB45°,

MECEBC

MEAB,ABCD,

MEABCD,

,,,

MQAQ,AMCM2,CP2MP

MQ,MP

PQMQ+MP

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,E是直線AB,CD內(nèi)部一點(diǎn),ABCD,連接EAED

(1)探究猜想:

①若∠A=20°,∠D=40°,則∠AED= °

②猜想圖①中∠AED,∠EAB,∠EDC的關(guān)系,并用兩種不同的方法證明你的結(jié)論.

(2)拓展應(yīng)用:

如圖②,射線FEl1,l2交于分別交于點(diǎn)E、FABCD,a,b,c,d分別是被射線FE隔開的4個(gè)區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個(gè)區(qū)域上的點(diǎn),猜想:∠PEB,∠PFC,∠EPF的關(guān)系(任寫出兩種,可直接寫答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)活動(dòng)課上,研究用正多邊形鑲嵌平面.請解決以下問題:

(1)用一種正多邊形鑲嵌平面

例如,用 6 個(gè)全等的正三角形鑲嵌平面,擺放方案如圖所示:

若用 m 個(gè)全等的正 n 邊形鑲嵌平面,求出 m,n 應(yīng)滿足的關(guān)系式;

(2)用兩種正多邊形鑲嵌平面

若這兩種正多邊形分別是邊長相等的正三角形和正方形,請畫出兩種不同的擺放方案;

(3)用多種正多邊形鑲嵌平面

若鑲嵌時(shí)每個(gè)頂點(diǎn)處的正多邊形有 n 個(gè),設(shè)這 n 個(gè)正多邊形的邊數(shù)分別為 x1,x2,…,xn,求出 x1,x2,…,xn 應(yīng)滿足的關(guān)系式.(用含 n 的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,AB3,AC4,點(diǎn)PBC上任意一點(diǎn),連PA,以PAPC為鄰邊作平行四邊形PAQC,連接PQ,則PQ的最小值為( 。

A. B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知整數(shù)a0,a1a2,a3,a4,,滿足下列條件:a00,a1=﹣|a0+1|,a2=﹣|a1+2|,a3=﹣|a2+3|,,以此類推,a2019的值是( )

A. 1009B. 1010C. 2018D. 2020

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)正比例函數(shù)圖象與一個(gè)一次函數(shù)圖象交于點(diǎn)A(3,4),且一次函數(shù)的圖象與y軸相交于點(diǎn)B(0,-5).

(1)求這兩個(gè)函數(shù)的表達(dá)式;

(2)AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳館普通票價(jià)20/,暑假為了促銷新推出兩種優(yōu)惠卡

金卡售價(jià)600/,每次憑卡不再收費(fèi)

銀卡售價(jià)150/,每次憑卡另收10

暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時(shí),所需總費(fèi)用為y

(1)分別寫出選擇銀卡、普通票消費(fèi)時(shí),yx之間的函數(shù)關(guān)系式

(2)在同一坐標(biāo)系中,若三種消費(fèi)方式對(duì)應(yīng)的函數(shù)圖象如圖所示,請求出點(diǎn)A、B、C的坐標(biāo);

(3)請根據(jù)函數(shù)圖象,直接寫出選擇哪種消費(fèi)方式更合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù) 的圖象經(jīng)過點(diǎn)A(4,0),B(﹣4,﹣4),且與y軸交于點(diǎn)C.

(1)試求此二次函數(shù)的解析式;
(2)試證明:∠BAO=∠CAO(其中O是原點(diǎn));
(3)若P是線段AB上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),過P作y軸的平行線,分別交此二次函數(shù)圖象及x軸于Q、H兩點(diǎn),試問:是否存在這樣的點(diǎn)P,使PH=2QH?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技進(jìn)步,無人機(jī)的應(yīng)用越來越廣,如圖,在某一時(shí)刻,無人機(jī)上的探測器顯示,從無人機(jī)A處看一棟樓頂部B點(diǎn)的仰角和看與頂部B在同一鉛垂線上高樓的底部c的俯角.

(1)如果上述仰角與俯角分別為30。與60。 , 且該樓的高度為30米,求該時(shí)刻無人機(jī)的豎直高度CD.
(2)如果上述仰角與俯角分別為α與β,且該樓的高度為m米.求用α、β、m表示該時(shí)刻無人機(jī)的豎直高度CD.

查看答案和解析>>

同步練習(xí)冊答案