已知正方形ABCD的邊長(zhǎng)為6,以D為圓心,DA為半徑在正方形內(nèi)作弧AC,E是AB邊上動(dòng)點(diǎn)(與點(diǎn)A、B不重精英家教網(wǎng)合),過(guò)點(diǎn)E作弧AC的切線,交BC于點(diǎn)F,G為切點(diǎn),⊙O是△EBF的內(nèi)切圓,分別切EB、BF、FE于點(diǎn)P、J、H
(1)求證:△ADE∽△PEO;
(2)設(shè)AE=x,⊙O的半徑為y,求y關(guān)于x的解析式,并寫出定義域;
(3)當(dāng)⊙O的半徑為1時(shí),求CF的長(zhǎng);
(4)當(dāng)點(diǎn)E在移動(dòng)時(shí),圖中哪些線段與線段EP始終保持相等,請(qǐng)說(shuō)明理由.
分析:(1)由EA與EG是⊙D的切線,根據(jù)切線長(zhǎng)定理即可得∠AED=∠FED,又由⊙O是△EBF的內(nèi)切圓,易證得∠AED=∠EOP,然后根據(jù)有兩角對(duì)應(yīng)相等的三角形相似,即可證得△ADE∽△PEO;
(2)首先根據(jù)題意求得AD,OP,PE的長(zhǎng),然后由△ADE∽△PEO,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得y關(guān)于x的解析式;
(3)由⊙O的半徑為1時(shí),根據(jù)(2)中的解析式,即可求得AE的長(zhǎng),然后設(shè)CF=a,根據(jù)切線長(zhǎng)定理可得1=
4+6-a-(a+2)
2
,則可求得CF的長(zhǎng);
(4)結(jié)合(2),由EP=6-x-y,即可求得EP=
36-6x
6+x
,然后在Rt△BEF中利用勾股定理,求得CF的值,又由切線長(zhǎng)定理可得EP=EH=CF=GF.
解答:(1)證明:∵EA與EG是⊙D的切線,
∴∠AED=∠FED,
∵⊙O是△EBF的內(nèi)切圓,
∴∠PEO=∠HEO,∠EPO=90°,
∴∠AED+∠PEO=90°,∠PEO+∠EOP=90°,
∴∠AED=∠EOP,
∴△ADE∽△PEO;(3分)

(2)解:∵AE=x,⊙O的半徑為y,
∴OP=PB=y,
∵正方形ABCD的邊長(zhǎng)為6,
∴AD=AB=6,
∴PE=AB-AE-PB=6-x-y,
∵△ADE∽△PEO,
OP
AE
=
PE
AD

y
x
=
6-x-y
6

整理得y=
6x-x2
x+6
,定義域?yàn)?<x<6;(6分)

(3)解:當(dāng)y=1時(shí),求得x=2或x=3,
設(shè)CF=a,當(dāng)x=2時(shí),EF=a+2,BF=6-a,EB=4,
∴1=
4+6-a-(a+2)
2
,解得a=3,
同理,當(dāng)x=3時(shí),解得a=2;(9分)

(4)EP=EH=CF=GF,
證明:EP=6-x-y=6-x-
6x-x2
6+x
=
36-6x
6+x
,
由BE2+BF2=EF2得(6-x)2+(6-a)2=(a+x)2,
整理得a=
36-6x
6+x
,
∴EP=CF,根據(jù)切線長(zhǎng)定理即可得EP=EH=CF=GF.(12分)
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì),正方形的性質(zhì),切線長(zhǎng)定理,內(nèi)切圓的性質(zhì)以及勾股定理等知識(shí).此題綜合性很強(qiáng),難度較大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊長(zhǎng)為12cm,E為CD邊上一點(diǎn),DE=5cm.以點(diǎn)A為中心,將△ADE按順時(shí)針?lè)较蛐D(zhuǎn)得△ABF,則點(diǎn)E所經(jīng)過(guò)的路徑長(zhǎng)為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•同安區(qū)質(zhì)檢)如圖,已知正方形ABCD的邊長(zhǎng)是2,E是AB的中點(diǎn),延長(zhǎng)BC到點(diǎn)F使CF=AE.
(1)求證:△ADE≌△CDF;
(2)現(xiàn)把△DCF向左平移,使DC與AB重合,得△ABH,AH交ED于點(diǎn)G.求AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•香洲區(qū)一模)如圖,已知正方形ABCD的邊長(zhǎng)為28,動(dòng)點(diǎn)P從A開(kāi)始在線段AD上以每秒3個(gè)單位長(zhǎng)度的速度向點(diǎn)D運(yùn)動(dòng)(點(diǎn)P到達(dá)點(diǎn)D時(shí)終止運(yùn)動(dòng)),動(dòng)直線EF從AD開(kāi)始以每秒1個(gè)單位長(zhǎng)度的速度向下平行移動(dòng)(即EF∥AD),并且分別與DC、AC交于E、F兩點(diǎn),連接FP,設(shè)動(dòng)點(diǎn)P與動(dòng)直線EF同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t 秒.
(1)t為何值時(shí),梯形DPFE的面積最大?最大面積是多少?
(2)當(dāng)梯形DPFE的面積等于△APF的面積時(shí),求線段PF的長(zhǎng).
(3)△DPF能否為一個(gè)等腰三角形?若能,試求出所有的t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD的邊長(zhǎng)為8cm,點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.當(dāng)EF=8cm時(shí),△AEF的面積是
32
32
cm2;當(dāng)EF=7cm時(shí),△EFC的面積是
8
8
cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案