【題目】如圖1,在平面直角坐標(biāo)系中,直線BC,直線BDx軸交于點(diǎn)A,點(diǎn)B2,3),點(diǎn)D0).

1)求直線BD的函數(shù)解析式;

2)在y軸上找一點(diǎn)P,使得△ABC與△ACP的面積相等,求出點(diǎn)P的坐標(biāo);

3)如圖2E為線段AC上一點(diǎn),連結(jié)BE,一動(dòng)點(diǎn)F從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位運(yùn)動(dòng)到點(diǎn)E再沿線段EA以每秒個(gè)單位運(yùn)動(dòng)到A后停止,設(shè)點(diǎn)F在整個(gè)運(yùn)動(dòng)過(guò)程中所用時(shí)間為t,求t的最小值.

【答案】1y=x+;(2P0,3)或(0,-3);(3

【解析】

1)設(shè)直線BD的解析式y=kx+b,將B23)和D0,)兩點(diǎn)代入,利用待定系數(shù)法即可求得

2)根據(jù)ABCACP的面積相等,得出P點(diǎn)縱坐標(biāo)的絕對(duì)值,再根據(jù)點(diǎn)Py軸上,從而確定點(diǎn)P的坐標(biāo)

3)根據(jù)題意可得,過(guò)點(diǎn)A作傾斜角為45度的直線l2,過(guò)點(diǎn)EEFl2交于點(diǎn)F,當(dāng)BE、F三點(diǎn)共線且垂直于直線l2時(shí),t最小,即t=BF′,再求出直線l2和直線BF的交點(diǎn),從而求出F′的坐標(biāo),繼而求出BF′即可.

解:(1)設(shè)直線BD的解析式為:y=kx+b

B2,3)和D0,)兩點(diǎn)代入解析式

得:解得:

∴直線BD的表達(dá)式為:y=x+;

2)∵ABCACP的面積相等

ABCACP同底,

∵點(diǎn)Py軸上,

P0,3)或(0,-3

3)根據(jù)題意可得:

過(guò)點(diǎn)A作傾斜角為45度的直線l2,過(guò)點(diǎn)EEFl2交于點(diǎn)F,

則:EF=AE,即t=BE+EF,
當(dāng)B、E、F三點(diǎn)共線且垂直于直線l2時(shí),t最小,即:t=,

直線l2的表達(dá)式為:y=-x-2,直線BF表達(dá)式為:y=x+1,

將上述兩個(gè)表達(dá)式聯(lián)立并解得:即:點(diǎn)F′

s

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】求證:全等三角形的對(duì)應(yīng)角平分線相等。

1)畫出適合題意的圖形,并結(jié)合圖形寫出已知和求證。

2)給出證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,要計(jì)算兩地的距離,甲、乙、丙、丁四組同學(xué)分別測(cè)量了部分線段的長(zhǎng)度和角的度數(shù),得到以下四組數(shù)據(jù):甲:,;乙:,,;丙:;丁:,,.其中能求得,兩地距離的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是邊長(zhǎng)為3cm的等邊三角形,點(diǎn)P,Q分別從頂點(diǎn)A、B同時(shí)出發(fā),沿線段AB,BC運(yùn)動(dòng),且它們的速度都為1cm/s.當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts),

1)當(dāng)t為何值時(shí),PBQ是直角三角形?

2)連接AQ、CP,相交于點(diǎn)M,則點(diǎn)P,Q在運(yùn)動(dòng)的過(guò)程中,∠CMQ會(huì)變化嗎?若變化,請(qǐng)說(shuō)明理由:若不變,請(qǐng)求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①是某公交車線路的收支差額y(票價(jià)總收入減去運(yùn)營(yíng)成本)與乘客量x的函數(shù)圖象.目前這條線路虧損,為了扭虧,有關(guān)部門舉行了提高票價(jià)的聽(tīng)證會(huì).乘客代表認(rèn)為:公交公司應(yīng)節(jié)約能源,改善管理,降低運(yùn)營(yíng)成本,以此舉實(shí)現(xiàn)扭虧.公交公司認(rèn)為:運(yùn)營(yíng)成本難以下降,公司己盡力,提高票價(jià)才能扭虧.根據(jù)這兩種意見(jiàn),可以把圖①分別改畫成圖②和圖③.下列說(shuō)法正確的是(

A.點(diǎn)A表示的是公交車公司票價(jià)為1B.點(diǎn)B表示乘客為0

C.反應(yīng)乘客意見(jiàn)的是②D.反應(yīng)公交公司意見(jiàn)的是②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=nx2﹣3nx﹣4n(n<0)與x軸交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),且拋物線與y軸交于點(diǎn)A.

(1)點(diǎn)B的坐標(biāo)為   ,點(diǎn)C的坐標(biāo)為   ;

(2)若∠BAC=90°,求拋物線的解析式.

(3)點(diǎn)M是(2)中拋物線上的動(dòng)點(diǎn),點(diǎn)N是其對(duì)稱軸上的動(dòng)點(diǎn),是否存在這樣的點(diǎn)M、N,使得以A、C、M、N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,AD為△ABC的中線,延長(zhǎng)ADE,使DEAD

1)試證明:△ACD≌△EBD;

2)用上述方法解答下列問(wèn)題:如圖2,AD為△ABC的中線,BMIADC,交ACM,若AMGM,求證:BGAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線與拋物線的開口大小及開口方向都完全相同,且頂點(diǎn)在直線上,頂點(diǎn)到軸的距離為,則此拋物線的解析式為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10分)已知∠MAN=135°,正方形ABCD繞點(diǎn)A旋轉(zhuǎn).

1)當(dāng)正方形ABCD旋轉(zhuǎn)到∠MAN的外部(頂點(diǎn)A除外)時(shí),AM,AN分別與正方形ABCD的邊CBCD的延長(zhǎng)線交于點(diǎn)M,N,連接MN

如圖1,若BM=DN,則線段MNBM+DN之間的數(shù)量關(guān)系是 ;

如圖2,若BM≠DN,請(qǐng)判斷中的數(shù)量關(guān)系是否仍成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;

2)如圖3,當(dāng)正方形ABCD旋轉(zhuǎn)到∠MAN的內(nèi)部(頂點(diǎn)A除外)時(shí),AM,AN分別與直線BD交于點(diǎn)M,N,探究:以線段BM,MNDN的長(zhǎng)度為三邊長(zhǎng)的三角形是何種三角形,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案