【題目】已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=38°,
(1)如圖①,若D為弧AB的中點(diǎn),求∠ABC和∠ABD的大;
(2)如圖②,過點(diǎn)D作⊙O的切線,與AB的延長線交于點(diǎn)P,若DP∥AC,求∠OCD的大小.
【答案】(1)∠ABC=52°∠ABD=45°;(2)∠OCD=26°.
【解析】
(1)根據(jù)圓周角和圓心角的關(guān)系和圖形可求∠ABC和∠ABD的大小.
(2)根據(jù)題意和平行線的性質(zhì),切線的性質(zhì)可以求得∠OCD的度數(shù).
(1)∵AB是⊙O的直徑,弦CD與AB相交,∠BAC=38°,
∴∠ACB=90°,
∴∠ABC=∠ACB-∠BAC=90°-38°=52°,
∵D為弧AB的中點(diǎn),∠AOB=180°,
∴∠AOD=90°,
∴∠ABD=45°;
(2)連接OD,
∵DP切⊙O于點(diǎn)D,
∴OD⊥DP,即∠ODP=90°,
由DP∥AC,又∠BAC=38°,
∴∠P=∠BAC=38°,
∵∠AOD是△ODP的一個(gè)外角,
∴∠AOD=∠P+∠ODP=128°,
∴∠ACD=64°,
∵OC=OA,∠BAC=38°,
∴∠OCA=∠BAC=38°,
∴∠OCD=∠ACD-∠OCA=64°-38°=26°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(0,1)、B(3,3)、C(1,3).
(1) 畫出△ABC關(guān)于點(diǎn)O的中心對稱圖形△A1B1C1
(2) 畫出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的△A2B2C2,直接寫出點(diǎn)C2的坐標(biāo)為______.
(3) 若△ABC內(nèi)一點(diǎn)P(m,n)繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的對應(yīng)點(diǎn)為Q,則Q的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)50°后得到△A′B′C′.若∠A=40°,∠B′=110°,則∠BCA′的度數(shù)是( 。
A.90°B.80°C.50°D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人分別站在相距 6 米的 A , B 兩點(diǎn)練習(xí)打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面 1 米的C 處發(fā)出一球,乙在離地面 1.5 米的 D 處成功擊球,球飛行過程中的最高點(diǎn) H 與甲的水平距離 AE 為 4 米,現(xiàn)以 A 為原點(diǎn),直線 AB 為 x 軸, 建立平面直角坐標(biāo)系(如圖所示).
(1)求羽毛球飛行的路線所在的拋物線的表達(dá)式;
(2)求羽毛球飛行的最高高度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(4,0)、B(﹣6,0),點(diǎn)C是y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)∠BCA=45°時(shí),點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,,點(diǎn)是內(nèi)一點(diǎn),連接,且,設(shè).
(1)如圖1,若,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)至,連結(jié),易證為等邊三角形,則 , ;
(2)如圖2,若,則 , ;
(3)如圖3,試猜想和之間的數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)與一次函數(shù),令W=.
(1)若、的函數(shù)圖像交于x軸上的同一點(diǎn).
①求的值;
②當(dāng)為何值時(shí),W的值最小,試求出該最小值;
(2)當(dāng)時(shí),W隨x的增大而減小.
①求的取值范圍;
②求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】形如的函數(shù)稱為反比例函數(shù),我們定義,如果一次函數(shù)和反比例函數(shù)的系數(shù)a、b、c(abc≠0)滿足,則稱二次函數(shù)為一次函數(shù)函數(shù)y1和反比例函數(shù)y2的“調(diào)和二次函數(shù)”.
(1)試判斷一次函數(shù)反比例函數(shù)的“調(diào)和二次函數(shù)”是否存在,并說明理;
(2)若二次函數(shù) y3 m 1 x2 2mx 4 是某一次函數(shù)和反比例函數(shù)的“調(diào)和二次函數(shù)”,試求該一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的腰長為10,一腰上的高為6,則以底邊為邊長的正方形的面積為( )
A. 40B. 80C. 40或360D. 80或360
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com