【題目】已知:順次連接矩形各邊的中點(diǎn),得到一個(gè)菱形,如圖①;再順次連接菱形各邊的中點(diǎn),得到一個(gè)新的矩形.如圖②;然后順次連接新的矩形各邊的中點(diǎn),得到一個(gè)新的菱形,如圖③;如此反復(fù)操作下去,則第3個(gè)圖形中直角三角形的個(gè)數(shù)有______個(gè),第2018個(gè)圖形中直角三角形的個(gè)數(shù)有______個(gè).
【答案】8; 4036
【解析】
寫出前幾個(gè)圖形中的直角三角形的個(gè)數(shù),并找出規(guī)律,當(dāng)n為奇數(shù)時(shí),三角形的個(gè)數(shù)是2(n+1),當(dāng)n為偶數(shù)時(shí),三角形的個(gè)數(shù)是2n,根據(jù)此規(guī)律求解即可.
解:第1個(gè)圖形,有4個(gè)直角三角形,
第2個(gè)圖形,有4個(gè)直角三角形,
第3個(gè)圖形,有8個(gè)直角三角形,
第4個(gè)圖形,有8個(gè)直角三角形,
…,
依此類推,當(dāng)n為奇數(shù)時(shí),三角形的個(gè)數(shù)是2(n+1),當(dāng)n為偶數(shù)時(shí),三角形的個(gè)數(shù)是2n個(gè),
所以,第2018個(gè)圖形中直角三角形的個(gè)數(shù)是2×2018=4036.
故答案是:8;4036.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx的圖象與x軸的正半軸交于點(diǎn)A(4,0),過A點(diǎn)的直線與y軸的正半軸交于點(diǎn)B,與二次函數(shù)的圖象交于另一點(diǎn)C,過點(diǎn)C作CH⊥x軸,垂足為H.設(shè)二次函數(shù)圖象的頂點(diǎn)為D,其對(duì)稱軸與直線AB及x軸分別交于點(diǎn)E和點(diǎn)F.
(1)求這個(gè)二次函數(shù)的解析式;
(2)如果CE=3BC,求點(diǎn)B的坐標(biāo);
(3)如果△DHE是以DH為底邊的等腰三角形,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由邊長(zhǎng)均為1個(gè)單位的小正方形組成的網(wǎng)格圖中,點(diǎn)都在格點(diǎn)上。
(1)的面積為__________________________;
(2)以為邊畫出一個(gè)與全等的三角形,并進(jìn)一步探究:滿足條件的三角形可以作出_____;
(3)在直線上確定點(diǎn),使的長(zhǎng)度最短.(畫出示意圖,并標(biāo)明點(diǎn)的位置即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了保護(hù)環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購(gòu)買A,B兩種型號(hào)的污水處理設(shè)備共10臺(tái).已知用90萬元購(gòu)買A型號(hào)的污水處理設(shè)備的臺(tái)數(shù)與用75萬元購(gòu)買B型號(hào)的污水處理設(shè)備的臺(tái)數(shù)相同,每臺(tái)設(shè)備價(jià)格及月處理污水量如下表所示:
污水處理設(shè)備 | A型 | B型 |
價(jià)格(萬元/臺(tái)) | m | m-3 |
月處理污水量(噸/臺(tái)) | 220 | 180 |
(1)求m的值;
(2)由于受資金限制,指揮部用于購(gòu)買污水處理設(shè)備的資金不超過165萬元,問有多少種購(gòu)買方案?并求出每月最多處理污水量的噸數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,給出下列四組條件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。其中一定能判斷這個(gè)四邊形是平行四邊形的條件共有
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(1,0),點(diǎn)B(0, ),把△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn),得A′B′O,記旋轉(zhuǎn)角為α.
(Ⅰ)如圖①,當(dāng)α=30°時(shí),求點(diǎn)B′的坐標(biāo);
(Ⅱ)設(shè)直線AA′與直線BB′相交于點(diǎn)M.
如圖②,當(dāng)α=90°時(shí),求點(diǎn)M的坐標(biāo);
②點(diǎn)C(﹣1,0),求線段CM長(zhǎng)度的最小值.(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠A=90°,有一個(gè)銳角為60°,BC=6.若點(diǎn)P在直線AC上(不與點(diǎn)A,C重合),且∠ABP=30°,則CP的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后的圖形是△A′B′C,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′落在中線AD上,且點(diǎn)A′是△ABC的重心,A′B′與BC相交于點(diǎn)E,那么BE:CE= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com