【題目】如圖,在RtΔABC,∠C=90°,AC=4cm,BC=3cm,動(dòng)點(diǎn)M、N從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A、B移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動(dòng),連接PM,PN,MN,設(shè)移動(dòng)時(shí)間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時(shí),ΔMCN面積為2cm?
(2)是否存在某一時(shí)刻t,使四邊形APNC的面積為cm?若存在,求t的值,若不存在,請(qǐng)說明理由;
(3)當(dāng)t為何值時(shí),以A、P、M為頂點(diǎn)的三角形與△ABC相似?
【答案】(1)2 (2)存在;1.5 (3)1.5
【解析】
(1)由題意可知CN=CM=t,再用含t的式子表示出三角形CMN的面積,再列方程即可求解;
(2)先根據(jù)勾股定理求出AB的長,過點(diǎn)P作PD⊥BC于點(diǎn)D,構(gòu)造平行線PD∥AC,由平行線分線段成比例求得以t表示的PD的值,再根據(jù)“S四邊形APNC=S△ABC-S△BPN”列出S與t的關(guān)系式,根據(jù)其面積等于,列方程求解,再將解進(jìn)行檢驗(yàn)即可得出結(jié)果.
(3)分類討論:△AMP∽△ABC和△APM∽△ABC兩種情況.利用相似三角形的對(duì)應(yīng)邊成比例來求t的值;
解:(1)由題意可知CN=CM=t,
∴S△MCN=CMCN=,
∴,
解得t=2或t=﹣2(舍去),
∴當(dāng)t的值為2時(shí),△MCN的面積為2cm2;
(2)存在,理由如下:
如圖1,過P作PD⊥BC于點(diǎn)D,則PD∥AC,
∴△PBD∽△ABC,
∴,
由題意可知AC=4cm,BC=3cm,
∴AB=5cm,且BP=2tcm,
∴,解得PD=cm,
∵CN=t,
∴BN=3﹣t,
∴S△PBN=BNPD=(3﹣t)×=,
∵S△ABC=ACBC=×4×3=6,
∴S四邊形APNC=S△ABC﹣S△PBN=6﹣()=,
令S四邊形APNC=可得=,即,解得,
∴當(dāng)t=1.5時(shí),四邊形APNC的面積為cm2;
(3)由(2)可知AP=5﹣2t,AM=4﹣t,
∵△APM和△ABC中滿足∠A=∠A,
∴由△APM和△ABC相似分兩種情況,即△APM∽△ABC和△AMP∽△ABC,
當(dāng)△APM∽△ABC時(shí),則有,即,解得t=0,不符合題意;
當(dāng)△AMP∽△ABC時(shí),則有,即,解得t=1.5,
∴當(dāng)t的值為1.5時(shí),滿足△APM和△ABC相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形中,,點(diǎn)在邊上,且,以點(diǎn)為圓心,為半徑在其左側(cè)作半圓,分別交)于點(diǎn),交的延長線于點(diǎn).
(1) ;
(2)如圖2,將半圓繞點(diǎn)逆時(shí)針旋轉(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為;設(shè)為半圓上一點(diǎn).
①當(dāng)點(diǎn)落在邊上時(shí),求點(diǎn)與線段之間的最短距離;
②當(dāng)半圓交于兩點(diǎn)時(shí),若的長為,求此時(shí)半圓與正方形重疊部分的面積;
③當(dāng)半圓與正方形的邊相切時(shí),設(shè)切點(diǎn)為,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了擴(kuò)大生產(chǎn)規(guī)模,計(jì)劃購買5臺(tái)兩種型號(hào)的設(shè)備,總資金不超過28萬元,且要求新購買的設(shè)備的日總產(chǎn)量不低于24萬件,兩種型號(hào)設(shè)備的價(jià)格和日產(chǎn)量如下表.為了節(jié)約資金,問應(yīng)選擇何種購買方案?
A | B | |
價(jià)格(萬元/臺(tái)) | 6 | 5 |
日產(chǎn)量(萬件/臺(tái)) | 6 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將等腰三角形折疊,使頂點(diǎn)與底邊的中點(diǎn)重合,折線分別交、于點(diǎn)、,連接、.
(1)如圖1,求證:四邊形是菱形;
(2)如圖2,延長至點(diǎn),使,連接,并延長交的延長線于點(diǎn),在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中的所有平行四邊形(不包括以為一邊的平行四邊形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】釣魚島自古以來就是我國的神圣領(lǐng)土,為維護(hù)國家主權(quán)和海洋權(quán)利,我國海監(jiān)和漁政部門對(duì)釣魚島海域?qū)崿F(xiàn)了常態(tài)化巡航管理.如圖,某日在我國釣魚島附近海域有兩艘自西向東航行的海監(jiān)船A、B,B船在A船的正東方向,且兩船保持20海里的距離,某一時(shí)刻兩海監(jiān)船同時(shí)測得在A的東北方向,B的北偏東15°方向有一我國漁政執(zhí)法船C,求此時(shí)船C與船B的距離是多少.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中俄“海上聯(lián)合—2014”反潛演習(xí)中,我軍艦A測得潛艇C的俯角為300.位于軍艦A正上方1000米的反潛直升機(jī)B側(cè)得潛艇C的俯角為680,試根據(jù)以上數(shù)據(jù)求出潛艇C離開海平面的下潛深度。(結(jié)果保留整數(shù)。參考數(shù)據(jù):sin680≈0.9,cos680≈0.4,,tan680≈2.5. ≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為25,內(nèi)部有6個(gè)全等的正方形,小正方形的頂點(diǎn)E、F、G、H分別落在邊AD、AB、BC、CD上,則每個(gè)小正方形的邊長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2﹣x+2與x軸交于點(diǎn)A,B兩點(diǎn),交y軸于C點(diǎn),拋物線的對(duì)稱軸與x軸交于H點(diǎn),分別以OC、OA為邊作矩形AECO.
(1)求直線AC的解析式;
(2)如圖2,P為直線AC上方拋物線上的任意一點(diǎn),在對(duì)稱軸上有一動(dòng)點(diǎn)M,當(dāng)四邊形AOCP面積最大時(shí),求|PM﹣OM|的最大值.
(3)如圖3,將△AOC沿直線AC翻折得△ACD,再將△ACD沿著直線AC平移得△A'C′D'.使得點(diǎn)A′、C'在直線AC上,是否存在這樣的點(diǎn)D′,使得△A′ED′為直角三角形?若存在,請(qǐng)求出點(diǎn)D′的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:=(為任意實(shí)數(shù))
(1)無論取何值,拋物線恒過兩點(diǎn)________,________.
(2)當(dāng)時(shí),設(shè)拋物線在第一象限依次經(jīng)過整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))為,….將拋物線沿直線平移,平移后的拋物線記為,拋物線經(jīng)過點(diǎn),的頂點(diǎn)為(,例如時(shí),拋物線經(jīng)過點(diǎn),頂點(diǎn)為)
①拋物線的解析式為________;頂點(diǎn)坐標(biāo)為________;
②在拋物線上是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo),并判斷四邊形的形狀;若不存在,請(qǐng)說明理由.
③直接寫出線段的長________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com