【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△ABO的邊AB垂直與x軸,垂足為點B,反比例函數(shù)y= (x>0)的圖象經(jīng)過AO的中點C,且與AB相交于點D,OB=4,AD=3,
(1)求反比例函數(shù)y= 的解析式;
(2)求cos∠OAB的值;
(3)求經(jīng)過C、D兩點的一次函數(shù)解析式.
【答案】
(1)
解:設(shè)點D的坐標(biāo)為(4,m)(m>0),則點A的坐標(biāo)為(4,3+m),
∵點C為線段AO的中點,
∴點C的坐標(biāo)為(2, ).
∵點C、點D均在反比例函數(shù)y= 的函數(shù)圖象上,
∴ ,解得: .
∴反比例函數(shù)的解析式為y=
(2)
解:∵m=1,
∴點A的坐標(biāo)為(4,4),
∴OB=4,AB=4.
在Rt△ABO中,OB=4,AB=4,∠ABO=90°,
∴OA= =4 ,cos∠OAB= =
(3)
解:∵m=1,
∴點C的坐標(biāo)為(2,2),點D的坐標(biāo)為(4,1).
設(shè)經(jīng)過點C、D的一次函數(shù)的解析式為y=ax+b,
則有 ,解得: .
∴經(jīng)過C、D兩點的一次函數(shù)解析式為y=﹣ x+3
【解析】(1)設(shè)點D的坐標(biāo)為(4,m)(m>0),則點A的坐標(biāo)為(4,3+m),由點A的坐標(biāo)表示出點C的坐標(biāo),根據(jù)C、D點在反比例函數(shù)圖象上結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可得出關(guān)于k、m的二元一次方程,解方程即可得出結(jié)論;(2)由m的值,可找出點A的坐標(biāo),由此即可得出線段OB、AB的長度,通過解直角三角形即可得出結(jié)論;(3)由m的值,可找出點C、D的坐標(biāo),設(shè)出過點C、D的一次函數(shù)的解析式為y=ax+b,由點C、D的坐標(biāo)利用待定系數(shù)法即可得出結(jié)論.本題考查了反比例函數(shù)與一次函數(shù)的交點問題、反比例函數(shù)圖象上點的坐標(biāo)特征、解直角三角形以及待定系數(shù)法求函數(shù)解析式,解題的關(guān)鍵是(1)由反比例函數(shù)圖象上點的坐標(biāo)特征找出關(guān)于k、m的二元一次方程組(2)求出點A的坐標(biāo);(2)求出點C、D的坐標(biāo).本題屬于基礎(chǔ)題,難度不大,但考查的知識點較多,解決該題型題目時,利用反比例函數(shù)圖象上點的坐標(biāo)特征找出方程組,通過解方程組得出點的坐標(biāo),再利用待定系數(shù)法求出函數(shù)解析式即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當(dāng)?shù)慕祪r措施,以擴(kuò)大銷售量,增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.
(1)設(shè)每件童裝降價x元時,每天可銷售件,每件盈利元;(用x的代數(shù)式表示)
(2)每件童裝降價多少元時,平均每天贏利1200元.
(3)要想平均每天贏利2000元,可能嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某生物小組觀察一植物生長,得到植物高度y(單位:厘米)與觀察時間x(單位:天)的關(guān)系,并畫出如圖所示的圖象(AC是線段,直線CD平行x軸).
(1)該植物從觀察時起,多少天以后停止長高?
(2)求直線AC的解析式,并求該植物最高長多少厘米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 元旦期間,天虹商場用2000元購進(jìn)某種品牌的毛衣共10件進(jìn)行銷售,每件毛衣的標(biāo)價為400元,實際銷售時,商場決定對這批毛衣全部按如下的方式進(jìn)行打折銷售:一次性購買一件打8折,一次性購買兩件或兩件以上,都打6折,商場在銷售完這批毛衣后,發(fā)現(xiàn)仍能獲利44%.
(1)該商場在售出這批毛衣時.屬于“一次性購買一件毛衣”的方式有多少件?
(2)小穎媽媽計劃在元且期間在天虹商場購買3件這種品牌的毛衣,請問她有哪幾種購買方案?哪一種購買方案最省錢?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+1與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO= .
(1)求k的值;
(2)設(shè)點N(1,a)是反比例函數(shù)y=(x>0)圖象上的點,在y軸上是否存在點P,使得PM+PN最?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組在全校范圍內(nèi)隨機(jī)抽取了50名同學(xué)進(jìn)行“我最喜愛的盧龍?zhí)禺a(chǎn)”調(diào)查活動.
調(diào)查問卷
在下面四種盧龍?zhí)禺a(chǎn)中,你最喜愛的是( )(單選)
A.段家溝李子 B.石門核桃
C.鮑子溝葡萄 D.火爐烤白薯
將調(diào)查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計圖:
請根據(jù)所給信息解答以下問題:
(1)請補(bǔ)全條形統(tǒng)計圖;
(2)若全校有2000名同學(xué),請估計全校同學(xué)中最喜愛“段家溝李子”的同學(xué)有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校七年級學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查,已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:
身高情況分組表(單位:cm)
組別 | 身高 |
A | 145≤x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | 170≤x<175 |
根據(jù)圖表提供的信息,回答下列問題:
(1)樣本中,男生人數(shù)為 人,男生身高類別B的頻率為 ;
(2)樣本中,女生身高在E組的人數(shù)為 人,女生類別D的頻數(shù)所對應(yīng)的扇形圓心角為 ;
(3)已知該校共有男生400人,女生380人,請估計身高在160≤x<170之間的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y=的圖象交于A、B兩點,過點A作AC垂直x軸于點C,連結(jié)BC.若△ABC的面積為2.
(1)求k的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,∠B=70°,BC=6,以AD為直徑的⊙O交CD于點E,則 的長為( )
A. π
B. π
C. π
D. π
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com