【題目】某校教師開展了練一手好字的活動,校委會對部分教師練習(xí)字帖的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了柳體”、“顏體”、”歐體其他類型,每位教師僅能選一項(xiàng),根據(jù)調(diào)查的結(jié)果繪制了如下統(tǒng)計表:

類別

柳體

顏體

歐體

其他

合計

人數(shù)

4

10

6

占的百分比

0.5

0.25

1

根據(jù)圖表提供的信息解答下列問題:

(1)這次問卷調(diào)查了多少名教師?

(2)請你補(bǔ)全表格.

(3)在調(diào)查問卷中,甲、乙、丙、丁四位教師選擇了柳體,現(xiàn)從以上四位教師中任意選出2名教師參加學(xué)校的柳體興趣小組,請你用畫樹狀圖或列表的方法,求選出的2人恰好是乙和丙兩位教師的概率.

【答案】(1)40;(2)詳見解析;(3).

【解析】分析:1)用歐體的頻數(shù)除以其頻率即可求得樣本總數(shù)

2)根據(jù)百分比=人數(shù)÷總?cè)藬?shù)分別求解可得;

3)畫樹狀圖得出所有等可能的情況數(shù),找出恰好是丙與乙的情況即可確定出所求概率.

詳解:(1)這次調(diào)查問卷中被調(diào)查的總?cè)藬?shù)為10÷0.25=40;

2)柳體的人數(shù)為40×0.5=20顏體所占的百分比為4÷40=0.1,其他所占百分比為6÷40=0.15,補(bǔ)全表格如下

3)畫樹狀圖,如圖所示

所有等可能的情況有12,其中恰好是丙與乙的情況有2,P(丙和乙)==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形中,長為3長為6,點(diǎn)出發(fā)沿以每秒1個單位的速度運(yùn)動,同時點(diǎn)出發(fā)沿以每秒2個單位的速度運(yùn)動(當(dāng)一個點(diǎn)到達(dá)終點(diǎn)時另一個點(diǎn)也隨之停止運(yùn)動).若運(yùn)動的時間為秒,則三角形的面積為______(用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,B=90°,AB=16cm,BC=12cm,P、Q是ABC邊上的兩個動點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動,且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.

(1)出發(fā)2秒后,求PQ的長;

(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動時,出發(fā)幾秒鐘后,PQB能形成等腰三角形?

(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動時,求能使BCQ成為等腰三角形的運(yùn)動時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A在數(shù)軸上對應(yīng)的數(shù)是a,點(diǎn)B在數(shù)軸上對應(yīng)的數(shù)是b,且|a+4|+b120,現(xiàn)將A、B之間的距離記作|AB|,定義|AB||ab|

1)求2019b+a的值;

2)求|AB|的值;

3)設(shè)點(diǎn)P在數(shù)軸上對應(yīng)的數(shù)是x,當(dāng)|PA||PB|2時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科普小組有5名成員,身高(單位:cm)分別為:160165170,163,172,把身高160 cm的成員替換成一位165 cm的成員后,現(xiàn)科普小組成員的身高與原來相比,下列說法正確的是( )

A.平均數(shù)變小,方差變小B.平均數(shù)變大,方差變大

C.平均數(shù)變大,方差不變D.平均數(shù)變大,方差變小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=2xy=-x的圖象分別為直線l1l2,過點(diǎn)(10)作x軸的垂線交l1于點(diǎn)A1,過A1點(diǎn)作y軸的垂線交l2于點(diǎn)A2,過點(diǎn)A2x軸的垂線交l1于點(diǎn)A3,過點(diǎn)A3y軸的垂線交l2于點(diǎn)A4,依次進(jìn)行下去,則點(diǎn)A2019的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABD中,ACBD于點(diǎn)C ,點(diǎn)EAB的中點(diǎn),tanD2,CE1,求sinECB的值和AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】改革開放40年以來,城鄉(xiāng)居民生活水平持續(xù)快速提升,居民教育、文化和娛樂消費(fèi)支出持續(xù)增長,已經(jīng)成為居民各項(xiàng)消費(fèi)支出中僅次于居住、食品煙酒、交通通信后的第四大消費(fèi)支出,如圖為北京市統(tǒng)計局發(fā)布的2017年和2018年我市居民人均教育、文化和娛樂消費(fèi)支出的折線圖.

說明:在統(tǒng)計學(xué)中,同比是指本期統(tǒng)計數(shù)據(jù)與上一年同期統(tǒng)計數(shù)據(jù)相比較,例如2018年第二季度與2017年第二季度相比較;環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期統(tǒng)計數(shù)據(jù)相比較,例如2018年第二季度與2018年第一季度相比較.

根據(jù)上述信息,下列結(jié)論中錯誤的是(  )

A. 2017年第二季度環(huán)比有所提高

B. 2017年第三季度環(huán)比有所提高

C. 2018年第一季度同比有所提高

D. 2018年第四季度同比有所提高

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案