【題目】黃巖島是我國南沙群島的一個小島,漁產(chǎn)豐富.一天某漁船離開港口前往該海域捕魚.捕撈一段時間后,發(fā)現(xiàn)一外國艦艇進入我國水域向黃巖島駛來,漁船向漁政部門報告,并。立即返航.漁政船接到報告后,立即從該港口出發(fā)趕往黃巖島.下圖是漁政船及漁船與港口的距離s和漁船離開港口的時間t之間的函數(shù)圖象.(假設(shè)漁船與漁政船沿同一航線航行)
(1)直接寫出漁船離開港口的距離s和漁船離開港口的時間t之間的函數(shù)關(guān)系式
(2)求漁船與漁政船相遇對,兩船與黃巖島的距離、
(3在漁政船駛往黃巖島的過程中,求漁船從港口 出發(fā)經(jīng)過多長時間與漁政船相距30海里?
【答案】(1)當(dāng)0≤t≤5時,s=30t;當(dāng)5<t≤8時,s=150;當(dāng)8<t≤13時,s=-30t+390(2)=60海里(3)9.6小時或10.5小時
【解析】解:(1)當(dāng)0≤t≤5時,s=30t;當(dāng)5<t≤8時,s=150;當(dāng)8<t≤13時,s=-30t+390。
(2)設(shè)漁政船離港口的距離s與漁船離開港口的時間t之間的函數(shù)關(guān)系式為s=kt+b,則
,解得。∴s=45t-360。
聯(lián)立,解得。
∴漁船離黃巖島的距離為150-90=60(海里)。
(3)∵,∴分兩種情況:
①-30t+390-(45t-360)=30,解得t=9.6;
②45t-360-(-30t+390)=30,解得t=10.5。
∴當(dāng)漁船離開港口9.6小時或10.5小時時,兩船相距30海里。
(1)由圖象可得出漁船離港口的距離s和它離開港口的時間t的函數(shù)關(guān)系式,分為三段求函數(shù)關(guān)系式。
(2)由圖象可知,當(dāng)8<t≤13時,漁船和漁政船相遇,利用待定系數(shù)求漁政船的函數(shù)關(guān)系式,再與這個時間段漁船的函數(shù)關(guān)系式聯(lián)立,可求相遇時,離港口的距離,再求兩船與黃巖島的距離。
(3)在漁政船駛往黃巖島的過程中,8<t≤13,漁船與漁政船相距30海里,有兩種可能:
①s漁-s漁政=30,②s漁政-s漁=30,將函數(shù)關(guān)系式代入,列方程求t。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市為了美化環(huán)境,計劃在如圖所示的三角形空地上種植草皮,已知這種草皮每平方米售價為元,則購買這種草皮至少需要______元.(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOC和∠DOB都是直角.
(1)如圖1,∠DOC=,則∠AOB= 度;
(2)在圖1中,如果∠DOC≠,找出圖中相等的銳角,并說明理由;
(3)在圖2中,利用三角板畫一個與∠FOE相等的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮從家出發(fā)步行到公交站臺后,等公交車去學(xué)校,如圖, 折線表示這個過程中行程 s (千米)與所花時間 t (分)之間的關(guān)系,下 列說法錯誤的是( )
A.他家到公交車站臺需行 1 千米B.他等公交車的時間為 4 分鐘
C.公交車的速度是 500 米/分D.他步行與乘公交車行駛的平均速度300米/分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的個數(shù)有( )
①-a一定是負數(shù);②|-a|一定是正數(shù);③倒數(shù)等于它本身的數(shù)是±1;
④絕對值等于它本身的數(shù)是1;⑤兩個有理數(shù)的和一定大于其中每一個加數(shù);⑥若 ,則a=b.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=14.5米,NF=0.2米.設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=56.3°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一只小貓睡在臺階的NF這層上曬太陽.
(1)求樓房的高度約為多少米?
(2)過了一會兒,當(dāng)α=45°時,問小貓能否還曬到太陽?請說明理由.(參考數(shù)據(jù):sin56.3°≈0.83,cos56.3°≈0.55,tan56.3°≈1.5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組,利用樹影測量樹高,如圖(1),已測出樹AB的影長AC為12米,并測出此時太陽光線與地面成30°夾角.
(1)求出樹高AB;
(2)因水土流失,此時樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設(shè)太陽光線與地面夾角保持不變.求樹的最大影長.(用圖(2)解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明,如圖點D,E,F分別是三角形ABC的邊BC,CA,AB上的點,DE∥BA,DF∥CA.求證:∠FDE=∠A.
證明:∵DE∥AB,
∴∠FDE=∠ ( )
∵DF∥CA,
∴∠A=∠ ( )
∴∠FDE=∠A( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格中每個小正方形邊長為1,△ABC的頂點都在格點上.將△ABC向左平移2格,再向上平移3格,得到△A′B′C′.
(1)請在圖中畫出平移后的△A′B′C′;
(2)畫出平移后的△A′B′C′的中線B′D′
(3)若連接BB′,CC′,則這兩條線段的關(guān)系是________
(4)△ABC在整個平移過程中線段AB 掃過的面積為________
(5)若△ABC與△ABE面積相等,則圖中滿足條件且異于點C的格點E共有______個
(注:格點指網(wǎng)格線的交點)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com