如圖,一邊靠校園圍墻,其他三邊用總長為40米的鐵欄桿圍成一個矩形花圃,設(shè)矩形ABCD的邊AB為x米,面積為S平方米,要使矩形ABCD面積最大,則x的長為(  )
A.10米B.15米C.20米D.25米

設(shè)矩形ABCD的邊AB為x米,則寬為40-2x,
S=(40-2x)x=-2x2+40x.
要使矩形ABCD面積最大,
則x=-
b
2a
=-
40
(-2)×2
=10m,
即x的長為10m.
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)若點C在拋物線的對稱軸上,點D在拋物線上,且以O(shè)、C、D、B四點為頂點的四邊形為平行四邊形,求D點的坐標;
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點P,使得△OBP與△OAB相似?若存在,求出P點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是一個拋物線形拱橋的示意圖,橋的跨度AB為100米,支撐橋的是一些等距的立柱,相鄰立柱的水平距離為10米(不考慮立柱的粗細),其中距A點10米處的立柱FE的高度為3.6米.
(1)求正中間的立柱OC的高度;
(2)是否存在一根立柱,其高度恰好是OC的一半?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖拋物線l1與x軸的交點的坐標為(-1,0)和(-5,0),與y軸的交點坐標為(0,2.5).
(1)求拋物線l1的解析式;
(2)拋物線l2與拋物線l1關(guān)于原點對稱,現(xiàn)有一身高為1.5米的人撐著傘與拋物線l2的對稱軸重合,傘面弧AB與拋物線l2重合,頭頂最高點C與傘的下沿AB在同一條直線上(如圖所示不考慮其他因素),如果雨滴下降的軌跡是沿著直線y=mx+b運動,那么不被淋到雨的m的取值范圍是多少?
(3)將傘的下沿AB沿著拋物線l2對稱軸上升10厘米至A1B1,A1B1比AB長8厘米,拋物線l2除頂點M不動外仍經(jīng)過弧A1B1(其余條件不變),那么被雨淋到的幾率是擴大了還是縮小了,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c的圖象過點A(2,4),頂點的橫坐標為
1
2
,它的圖象與x軸交于兩點B(x1,0)、C(x2,0),與y軸交于點D,且x12+x22=13.試問:y軸上是否存在點P,使得△POB與△DOC相似(O為坐標原點)?若存在,請求出過P、B兩點直線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知拋物線y=ax2+bx+c過點A(-1,0),且經(jīng)過直線y=x-3與坐標軸的兩個交點B、C.
(1)求拋物線的表達式;
(2)若點M在第四象限內(nèi)且在拋物線上,有OM⊥BC,垂足為D,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx-4與x軸交于A(-4,0)、B(3,0)兩點,與y軸交于點C.

(1)求拋物線的函數(shù)關(guān)系式;
(2)點P是拋物上第三象限內(nèi)的一動點,當點P運動到什么位置時,四邊形ABCP的面積最大?求出此時點P的坐標和四邊形ABCP的面積;
(3)點M在拋物線對稱軸上,點N是平面內(nèi)一點,是否存在這樣的點M、N,使得以點M、N、B、C為頂點的四邊形是菱形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知一動圓的圓心P在拋物線y=
1
2
x2-3x+3上運動.若⊙P半徑為1,點P的坐標為(m,n),當⊙P與x軸相交時,點P的橫坐標m的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=
x2
3
(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DEAC,交y2于點E,則
DE
AB
=______.

查看答案和解析>>

同步練習(xí)冊答案