【題目】
(1)問題發(fā)現(xiàn) 如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.
填空:
①∠AEB的度數(shù)為;
②線段AD,BE之間的數(shù)量關(guān)系為
(2)拓展探究 如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.
(3)解決問題 如圖3,在正方形ABCD中,CD= ,若點(diǎn)P滿足PD=1,且∠BPD=90°,請直接寫出點(diǎn)A到BP的距離.

【答案】
(1)60°;AD=BE
(2)解:∠AEB=90°,AE=BE+2CM.

理由:如圖2,

∵△ACB和△DCE均為等腰直角三角形,

∴CA=CB,CD=CE,∠ACB=∠DCE=90°.

∴∠ACD=∠BCE.

在△ACD和△BCE中,

∴△ACD≌△BCE(SAS).

∴AD=BE,∠ADC=∠BEC.

∵△DCE為等腰直角三角形,

∴∠CDE=∠CED=45°.

∵點(diǎn)A,D,E在同一直線上,

∴∠ADC=135°.

∴∠BEC=135°.

∴∠AEB=∠BEC﹣∠CED=90°.

∵CD=CE,CM⊥DE,

∴DM=ME.

∵∠DCE=90°,

∴DM=ME=CM.

∴AE=AD+DE=BE+2CM.


(3)解:點(diǎn)A到BP的距離為

理由如下:

∵PD=1,

∴點(diǎn)P在以點(diǎn)D為圓心,1為半徑的圓上.

∵∠BPD=90°,

∴點(diǎn)P在以BD為直徑的圓上.

∴點(diǎn)P是這兩圓的交點(diǎn).

①當(dāng)點(diǎn)P在如圖3①所示位置時,

連接PD、PB、PA,作AH⊥BP,垂足為H,

過點(diǎn)A作AE⊥AP,交BP于點(diǎn)E,如圖3①.

∵四邊形ABCD是正方形,

∴∠ADB=45°.AB=AD=DC=BC= ,∠BAD=90°.

∴BD=2.

∵DP=1,

∴BP=

∵∠BPD=∠BAD=90°,

∴A、P、D、B在以BD為直徑的圓上,

∴∠APB=∠ADB=45°.

∴△PAE是等腰直角三角形.

又∵△BAD是等腰直角三角形,點(diǎn)B、E、P共線,AH⊥BP,

∴由(2)中的結(jié)論可得:BP=2AH+PD.

=2AH+1.

∴AH=

②當(dāng)點(diǎn)P在如圖3②所示位置時,

連接PD、PB、PA,作AH⊥BP,垂足為H,

過點(diǎn)A作AE⊥AP,交PB的延長線于點(diǎn)E,如圖3②.

同理可得:BP=2AH﹣PD.

=2AH﹣1.

∴AH=

綜上所述:點(diǎn)A到BP的距離為


【解析】解:(1)①如圖1, ∵△ACB和△DCE均為等邊三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,

∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE為等邊三角形,
∴∠CDE=∠CED=60°.
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=120°.
∴∠BEC=120°.
∴∠AEB=∠BEC﹣∠CED=60°.
所以答案是:60°.
②∵△ACD≌△BCE,
∴AD=BE.
所以答案是:AD=BE.

【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和等邊三角形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);等邊三角形的三個角都相等并且每個角都是60°才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的邊AC與⊙O相交于C,D兩點(diǎn),且經(jīng)過圓心O,邊AB與⊙O相切,切點(diǎn)為B.如果∠A=34°,那么∠C等于(
A.28°
B.33°
C.34°
D.56°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠1+∠2=180°,∠B=∠D.說明ABCD的理由.

補(bǔ)全下面的說理過程,并在括號內(nèi)填上適當(dāng)?shù)睦碛?/span>

解:∵∠1+∠2=180°(已知)

∠2=∠AHB   

   (等量代換)

DEBF   

∴∠D=∠      

∵∠   =∠B(等量代換)

ABCD   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,正方形ABCD中,繞點(diǎn)A順時針旋轉(zhuǎn),它的兩邊長分別交CBDC或它們的延長線于點(diǎn)MN于點(diǎn)H

如圖,當(dāng)點(diǎn)A旋轉(zhuǎn)到時,請你直接寫出AHAB的數(shù)量關(guān)系;

如圖,當(dāng)繞點(diǎn)A旋轉(zhuǎn)到時,中發(fā)現(xiàn)的AHAB的數(shù)量關(guān)系還成立嗎?如果不成立請寫出理由,如果成立請證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:五蓮縣新瑪特購物中心第一次用5000元購進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價和售價如下表(注:獲利=售價﹣進(jìn)價)

進(jìn)價(元/件)

20

30

售價(元/件)

29

40

(1)新瑪特購物中心將第一次購進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

(2)該購物中心第二次以第一次的進(jìn)價又購進(jìn)甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤比第一次獲得的總利潤多160元,求第二次乙種商品是按原價打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵居民節(jié)約用電,采用分段計(jì)費(fèi)的方法按月計(jì)算每戶家庭的電費(fèi),分兩檔收費(fèi):第一檔是當(dāng)月用電量不超過240度時實(shí)行基礎(chǔ)電價;第二檔是當(dāng)用電量超過240度時,其中的240度仍按照基礎(chǔ)電價計(jì)費(fèi),超過的部分按照提高電價收費(fèi).設(shè)每個家庭月用電量為x 度時,應(yīng)交電費(fèi)為y 元.具體收費(fèi)情況如折線圖所示,請根據(jù)圖象回答下列問題:

(1)“基礎(chǔ)電價____________ 度;

(2)求出當(dāng)x240 時,y與x的函數(shù)表達(dá)式;

(3)若紫豪家六月份繳納電費(fèi)132元,求紫豪家這個月用電量為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E是邊BC的中點(diǎn),直線EF交正方形外角的平分線于點(diǎn)F,交DC于點(diǎn)G,且AE⊥EF.

(1)當(dāng)AB=2時,求GC的長;

(2)求證:AE=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,3).雙曲線y= (x>0)的圖象經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE.

(1)求k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是OC邊上一點(diǎn),且△FBC∽△DEB,求直線FB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:有兩個角和第三個角的平分線對應(yīng)相等的兩個三角形全等;有兩條邊和第三條邊上的中線對應(yīng)相等的兩個三角形全等;有兩條邊和第三條邊上的高對應(yīng)相等的兩個三角形全等.其中正確的是( 。

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

同步練習(xí)冊答案