【題目】三江夜游項目是寧波市月光經(jīng)濟和“三江六岸”景觀提升的重要工程,一艘游輪從周宿夜江游船碼頭到寧波大劇院游船碼頭順流而行用40分鐘,從寧波大劇院游船碼頭沿原線返回周宿夜江游船碼頭用了1小時,已知游輪在靜水中的平均速度為8千米/小時,求水流的速度.設(shè)水流的速度為x千米/小時,則可列方程為( )
A.40(8-x)=1×(8+x) B. (8+x)=8 C. (8+x)=8-x D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為4的正方形ABCD內(nèi)接于⊙O,點E是上的一個動點(不與A、B重合),點F是上的一點,連接OE、OF,分別與AB、BC交于點G、H,且∠EOF=90°,有下列結(jié)論: ①; ②△OGH是等腰直角三角形; ③四邊形OGBH的面積不隨點E位置的變化而變化; ④△GBH周長的最小值為.其中錯誤的是______.(把你認為錯誤結(jié)論的序號填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計劃組織師生共300人參加一次大型公益活動,如果租用6輛大客車和5輛小客車,恰好全部坐滿,已知每輛大客車的乘客座位數(shù)比小客車多17個.
(1)求每輛大客車和每輛小客車的乘客座位數(shù);
(2)由于最后參加活動的人數(shù)增加了30人,學(xué)校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,且所有參加活動的師生都有座位,求租用小客車數(shù)量的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七、八年級各有學(xué)生400人,為了解這兩個年級普及安全教育的情況,進行了抽樣調(diào)查,過程如下
選擇樣本,收集數(shù)據(jù)從七、八年級各隨機抽取20名學(xué)生,進行安全教育考試,測試成績(百分制)如下:
七年級 85 79 89 83 89 98 68 89 79 59
99 87 85 89 97 86 89 90 89 77
八年級 71 94 87 92 55 94 98 78 86 94
62 99 94 51 88 97 94 98 85 91
分組整理,描述數(shù)據(jù)
(1)按如下頻數(shù)分布直方圖整理、描述這兩組樣本數(shù)據(jù),請補全八年級20名學(xué)生安全教育頻數(shù)分布直方圖;
(2)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率如下表所示,請補充完整;
得出結(jié)論,說明理由.
(3)整體成績較好的年級為___,理由為___(至少從兩個不同的角度說明合理性).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△OAC是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點O與原點重合,點A在x軸上,點C在y軸上,OA和OC是方程x(3+)x+3=0的兩根(OA>OC),∠CAO=30°,將Rt△OAC折疊,使OC邊落在AC邊上,點O與點D重合,折痕為CE.
(1)求點D的坐標(biāo);
(2)設(shè)點M為直線CE上的一點,過點M作AC的平行線,交y軸于點N,是否存在這樣的點M,使得以M、N、D. C為頂點的四邊形是平行四邊形?若存在,請求出符合條件的點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點E,過點E作MN∥BC交AB于M,交AC于N,若BM+CN=10,則線段MN的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是甲、乙兩車在某時段速度隨時間變化的圖像;下列說法:
①乙車前 4 秒行駛的路程為 48 米;
②在 0 到 8 秒內(nèi)甲車的速度每秒增加 4 米;
③兩車到第 3 秒時行駛的路程相等;
④在 4 到 8 秒內(nèi)甲車的速度都大于乙車的速度.
其中正確的有( )
A. 1 個B. 2 個C. 3 個D. 4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店以每件80元的進價購進某種商品,原來按每件100元的售價出售,一天可售出50件;后經(jīng)市場調(diào)查,發(fā)現(xiàn)這種商品每件的售價每降低2元,其銷售量可增加10件.
(1)該網(wǎng)店銷售該商品原來一天可獲利潤 元.
(2)設(shè)后來該商品每件售價降價元,網(wǎng)店一天可獲利潤元.
①若此網(wǎng)店為了盡可能增加該商品的銷售量,且一天仍能獲利1080元,則每件商品的售價應(yīng)降價多少元?
②求與之間的函數(shù)關(guān)系式,當(dāng)該商品每件售價為多少元時,該網(wǎng)店一天所獲利潤最大?并求最大利潤值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為實施鄉(xiāng)村振興戰(zhàn)略,解決某山區(qū)老百娃出行難的問題,當(dāng)?shù)卣疀Q定修建一條高速公路,其中一段長為146米的山體隧道貫穿工程由甲、乙兩個工程隊負責(zé)施工,甲工程隊獨立工作2天后,乙工程隊加入,兩個工程隊又聯(lián)合工作了1天,這3天共掘進26米,已知甲工程隊平均每天比乙工程隊多掘進2米.
(1)求甲、乙兩個工程隊平均每天分別掘進多少米?
(2)若甲、乙兩個工程隊按此施工速度進行隧道貫穿工程,剩余工程由這兩個工程隊聯(lián)合施工,求完成這項隧道貫穿工程一共需要多少天?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com