【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)為( )

A. 135° B. 130° C. 125°

D. 120°

【答案】B

【解析】試題分析:根據(jù)要使△AMN的周長(zhǎng)最小,即利用點(diǎn)的對(duì)稱,讓三角形的三邊在同一直線上,作出A關(guān)于BCCD的對(duì)稱點(diǎn)A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,進(jìn)而得出∠AMN+∠ANM=2∠AA′M+∠A″)即可得出答案.

A關(guān)于BCCD的對(duì)稱點(diǎn)A′,A″,連接A′A″,交BCM,交CDN,則A′A″即為△AMN的周長(zhǎng)最小值.作DA延長(zhǎng)線AH,

∵∠DAB=120°,

∴∠HAA′=60°,

∴∠AA′M+∠A″=∠HAA′=60°

∵∠MA′A=∠MAA′,∠NAD=∠A″,

∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM

∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2∠AA′M+∠A″=2×60°=120°,

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn):

(1)5x﹣4y﹣3x﹣y;

(2)3(m2﹣2m﹣1)﹣2(2m2﹣3m)﹣3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知1=2,要得到ABD≌△ACE,從下列條件中補(bǔ)選一個(gè),則錯(cuò)誤的是( )

A.AB=AC B.DB=EC C.ADB=AEC D.B=C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線y(a3)x22有最低點(diǎn),那么a的取值范圍是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知yx 的函數(shù),自變量x的取值范圍是x >0,下表是yx 的幾組對(duì)應(yīng)值.

x

···

1

2

3

5

7

9

···

y

···

1.98

3.95

2.63

1.58

1.13

0.88

···

小騰根據(jù)學(xué)習(xí)一次函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的yx之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.

下面是小騰的探究過(guò)程,請(qǐng)補(bǔ)充完整:

(1)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;

(2)根據(jù)畫(huà)出的函數(shù)圖象,寫(xiě)出:

x=4對(duì)應(yīng)的函數(shù)值y約為________;

該函數(shù)的一條性質(zhì):__________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列一元一次不等式解應(yīng)用題時(shí),應(yīng)注意抓住題中的關(guān)鍵詞.用不等號(hào)表示下列關(guān)鍵詞:不大于: ,不少于: ,不超過(guò): ,至多: ,至少: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,⊙O是△ABC的外接圓,,點(diǎn)D在邊BC上,AE∥BC,AE=BD

(1)求證:AD=CE;

(2)如果點(diǎn)G在線段DC上(不與點(diǎn)D重合),且AG=AD,求證:四邊形AGCE是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若│a│=5,│b│=3且a>b,則a-b=(

A. 2或8 B. -2或-8 C. -5或-3 D. ±3或±8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程是3x﹣7=11+x的解是

查看答案和解析>>

同步練習(xí)冊(cè)答案