【題目】我們知道,對(duì)于一個(gè)圖形,通過(guò)兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)字等式,例如圖1,可以得到(a+2b)(a+b)=a2+3ab+2b2.請(qǐng)解答下問(wèn)題:
(1)寫(xiě)出圖2中所表示的數(shù)學(xué)等式_____;
(2)利用(1)中所得到的結(jié)論,解決下面的問(wèn)題:已知a+b+c=9,ab+bc+ac=26,求a2+b2+c2的值;
(3)小明同學(xué)用2張邊長(zhǎng)為a的正方形、3張邊長(zhǎng)為b的正方形、5張邊長(zhǎng)為a、b的長(zhǎng)方形紙片拼出了一個(gè)長(zhǎng)方形,那么該長(zhǎng)方形較長(zhǎng)一邊的邊長(zhǎng)為多少?
(4)小明同學(xué)又用x張邊長(zhǎng)為a的正方形,y張邊長(zhǎng)為b的正方形,z張邊長(zhǎng)分別為a、b的長(zhǎng)方形紙片拼出了一個(gè)面積為(25a+7b)(2a+5b)長(zhǎng)方形,求9x+10y+6.
【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ca;(2)29;(3)較長(zhǎng)的一邊長(zhǎng)為2a+3b;(4)806.
【解析】
(1)直接求得正方形的面積,然后再根據(jù)正方形的面積=各矩形的面積之和求解即可;
(2)將a+b+c=9,ab+bc+ac=26代入(1)中得到的關(guān)系式,然后進(jìn)行計(jì)算即可;
(3)先列出長(zhǎng)方形的面積的代數(shù)式,然后分解代數(shù)式,可得到矩形的兩邊長(zhǎng)
(4)長(zhǎng)方形的面積xa2+yb2+zab=(25a+7b)(9a+5b),然后運(yùn)算多項(xiàng)式乘多項(xiàng)式法則求得(25a+7
b)(2a+45b)的結(jié)果,從而得到x、y、z的值,代入即可求解
解:(1)正方形的面積可表示為=(a+b+c)2;
正方形的面積=a2+b2+c2+2ab+2bc+2ca,
所以(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.
故答案為:(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.
(2)由(1)可知:a2+b2+c2=(a+b+c)2﹣2(ab+bc+ca)=92﹣26×2=81﹣52=29.
(3)長(zhǎng)方形的面積=2a2+5ab+3b2=(2a+3b)(a+b).
所以長(zhǎng)方形的邊長(zhǎng)為2a+3b和a+b,
所以較長(zhǎng)的一邊長(zhǎng)為2a+3b.
(4)∵長(zhǎng)方形的面積=xa2+yb2+zab=(25a+7b)(2a+5b)=50a2+14ab+125ab+35b2=50a2+139ab+35b2,
∴x=50,y=35,z=139.
∴9x+10y+6=450+350+6=806.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年11月11日,張杰參加了某網(wǎng)點(diǎn)的“翻牌抽獎(jiǎng)”活動(dòng).如圖所示,4張牌上分別寫(xiě)有對(duì)應(yīng)獎(jiǎng)品的價(jià)值為10元,15元,20元和“謝謝惠顧”的字樣.
⑴如果隨機(jī)翻1張牌,那么抽中有獎(jiǎng)的概率為 ,抽中15元及以上獎(jiǎng)品的概率為 .
⑵如果隨機(jī)翻2張牌,且第一次翻過(guò)的牌不再參加下次翻牌,用畫(huà)樹(shù)狀圖或列表法列出抽獎(jiǎng)的所有等可能性情況,并求出獲獎(jiǎng)品總值不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長(zhǎng)度的半圓、、,組成一條平滑的曲線,點(diǎn)從原點(diǎn)出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒個(gè)單位長(zhǎng)度,則第2019秒時(shí),點(diǎn)的坐標(biāo)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,則下列敘述正確的是( )
A. abc<0 B. -3a+c<0
C. b2-4ac≥0 D. 將該函數(shù)圖象向左平移2個(gè)單位后所得到拋物線的解析式為y=ax2+c
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知直線,點(diǎn),在直線上,點(diǎn),在直線上,且AB//CD,若保持不動(dòng),線段先向右勻速平行移動(dòng),中間停止一段時(shí)間后再向左勻速平行移動(dòng).圖2反映了的長(zhǎng)度隨時(shí)間的變化而變化的情況,則
(1)在線段開(kāi)始平移之前,_______;
(2)線段邊向右平移了_______,向右平移的速度是______;
(3)圖3反映了變化過(guò)程中的面積隨時(shí)間變化的情況.
①平行線,之間的距離為_______;
②當(dāng)時(shí),面積S的值為_____;
③當(dāng)時(shí),直接寫(xiě)出關(guān)于的函數(shù)關(guān)系式______(可以不化簡(jiǎn)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(-3,0),對(duì)稱軸為直線x=-1,給出四個(gè)結(jié)論:①b2>4ac;②2a+b=0;③a+b+c>0;④若點(diǎn)B(-,y1),C(-,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2.其中正確結(jié)論是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用工件槽(如圖1)可以檢測(cè)一種鐵球的大小是否符合要求,已知工件槽的兩個(gè)底角均為90°,尺寸如圖(單位:cm).將形狀規(guī)則的鐵球放入槽內(nèi)時(shí),若同時(shí)具有圖1所示的A、B、E三個(gè)接觸點(diǎn),該球的大小就符合要求.圖2是過(guò)球心O及A、B、E三點(diǎn)的截面示意圖,求這種鐵球的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花圃銷售一批名貴花卉,平均每天可售出20盆,每盆盈利40元,為了增加盈利并盡快減少庫(kù)存,花圃決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每盆花卉每降1元,花圃平均每天可多售出2盆.
(1)若花圃平均每天要盈利1200元,每盆花卉應(yīng)降價(jià)多少元?
(2)每盆花卉降低多少元時(shí),花圃平均每天盈利最多,是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC中,
(1)如圖1,若D為線段BC中點(diǎn),線段AD關(guān)于直線AB的對(duì)稱線段為線段AE,連接DE,求∠BDE的度數(shù);
(2)若點(diǎn)D為線段BC上一動(dòng)點(diǎn)(不與B,C重合),連接AD并將線段AD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°得到線段DE,連接BE.
①根據(jù)題意在圖2中補(bǔ)全圖形;
②小玉通過(guò)觀察、驗(yàn)證,提出猜測(cè):在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,恒有CD=BE.請(qǐng)幫助小玉證明CD=BE.
圖1 圖2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com