【題目】如圖,M為線段AB的中點,AEBD交于點C,,且DMACFMEBC于點G

1)寫出圖中相似三角形,并證明其中的一對;

2)請連結(jié)FG,如果,,求BG、FG的長.

【答案】1)△AME∽△MFE,△BMD∽△MGD,△AMF∽△BGM,證明見解析;(2BGFG

【解析】

1)根據(jù)已知條件,∠DME=∠A=∠B,結(jié)合圖形上的公共角,即可推出△DMG∽△DBM,△EMF∽△EAMAMF∽△BGM;

2)根據(jù)相似三角形的性質(zhì),推出BG的長度,依據(jù)銳角三角函數(shù)推出AC的長度,即可求出CG、CF的長度,繼而推出FG的長度.

1)△AME∽△MFE,△BMD∽△MGD,△AMF∽△BGM,

∵∠AMD=∠B+∠D,∠BGM=∠DMG+∠D

又∠B=∠A=∠DME

∴∠AMF=∠BGM,

∴△AMF∽△BGM,

2)當45°時,可得ACBCACBC,

MAB的中點,

AMBM2

∵∠DME=∠A=∠B,∠FMB是△AFM的外角,

∴∠FMB=∠A+∠AFM=∠DME+∠GMB,

∴∠AFM=∠GMB,

∴△AMF∽△BGM,

BGACBC4cos45°=4,

CG4,CF431

FG

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAB120°,∠DCB60°,CBCDAC8,則四邊形ABCD的面積為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點EF分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AGAH什么關(guān)系?請說明理由;

(3)設AEm,

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關(guān)系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將繞頂點A順時針旋轉(zhuǎn)后得到,且的中點,相交于,若,則線段的長度為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)yaxbyax2bx的圖象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的內(nèi)切圓⊙OBC,CA,AB分別相切于點D,EF.且AB5AC12,BC13,則⊙O的半徑是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:點AB、C、D為⊙O上的四等分點,動點P從圓心O出發(fā),沿OCDO的路線做勻速運動.設運動的時間為t秒,∠APB的度數(shù)為y.則下列圖象中表示yt之間函數(shù)關(guān)系最恰當?shù)氖牵ā 。?/span>

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應點D′的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線x軸交于A-10),B3,0)兩點,與y軸交于點C

(1)求該拋物線的解析式;

(2)如圖①,若點D是拋物線上一動點,設點D的橫坐標為m0m3),連接CD,BD,BC,AC,當△BCD的面積等于△AOC面積的2倍時,求m的值;

(3)若點N為拋物線對稱軸上一點,請在圖②中探究拋物線上是否存在點M,使得以B,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案