已知:如圖,在正方形中,上一點,延長,使,連接并延長交
【小題1】求證:;(4分)
【小題2】將繞點順時針旋轉得到,
判斷四邊形是什么特殊四邊形?并說明理由.(6分)

【小題1】證明:∵四邊形為正方形,∴BC=CD,∠BCG=∠DCE=90°.
∵CG=CE,∴△BCG≌△DCE.
【小題2】答:四邊形E′BGD是平行四邊形
理由:∵△DCE繞點D順時針旋轉90°得到△DAE′
∴CE=AE′,∵CG=CE,∴CG=AE′,∵AB=CD,AB∥CD,
∴BE′=DG,BE′∥DG,
∴四邊形E′BGD是平行四邊形.解析:
p;【解析】略
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD中,E是CB延長線上一點,EB=
12
BC,如果F是AB的中點,請你在正方形ABCD上找一點,與F點連接成線段,并說明它和AE相等的理由.
解:連接
 
,則
 
=AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=
5
.下列結論:
①△APD≌△AEB;
②點B到直線AE的距離為
2

③EB⊥ED;
④S△APD+S△APB=1+
6

⑤S正方形ABCD=4+
6
.其中正確結論的序號是( 。
A、①③④B、①②⑤
C、③④⑤D、①③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD中,P是BC上的點,且BP=3PC,Q是CD的中點.△ADQ與△QCP是否相似?
為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在正方形ABCD中,AB=8,點E在邊AB上點,CE的垂直平分線FP 分別交AD精英家教網(wǎng)、CE、CB于點F、H、G,交AB的延長線于點P.
(1)求證:△EBC∽△EHP;
(2)設BE=x,BP=y,求y與x之間的函數(shù)解析式,并寫出定義域;
(3)當BG=
74
時,求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在正方形ABCD中,E、F分別是AD、CD的中點.
(1)線段AF與BE有何關系.說明理由;
(2)延長AF、BC交于點H,則B、D、G、H這四個點是否在同一個圓上.說明理由.

查看答案和解析>>

同步練習冊答案