【題目】在△ABC中,DE垂直平分AB ,分別交AB、BC于點(diǎn)D 、E,MN垂直平分AC,分別交AC、BC于點(diǎn)M、N,連接AE,AN.
(1)如圖1,若∠BAC= 100°,求∠EAN的度數(shù);
(2)如圖2,若∠BAC=70°,求∠EAN的度數(shù);
(3)若∠BAC=a(a≠90°),請(qǐng)直接寫出∠EAN的度數(shù). (用含a的代數(shù)式表示)
【答案】(1)∠EAN=20°;(2)∠EAN=40°;(3)當(dāng)0<a<90°時(shí),∠EAN=180°-2a;當(dāng)180°>a>90°時(shí),∠EAN=2a -180°.
【解析】
(1)根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AE=BE,再根據(jù)等邊對(duì)等角可得∠BAE=∠B,同理可得,∠CAN=∠C,然后利用三角形的內(nèi)角和定理求出∠B+∠C,再根據(jù)∠EAN=∠BAC-(∠BAE+∠CAN)代入數(shù)據(jù)進(jìn)行計(jì)算即可得解;
(2)同(1)的思路,最后根據(jù)∠EAN=∠BAE+∠CAN-∠BAC代入數(shù)據(jù)進(jìn)行計(jì)算即可得解;
(3)根據(jù)前兩問的求解,分α<90°與α>90°兩種情況解答.
(1)因?yàn)?/span>DE垂直平分AB,
所以AE=BE,∠BAE=∠B,
同理可得∠CAN= ∠C,
所以∠EAN=∠BAC -∠BAE-∠CAN=∠BAC -(∠B+∠C),
在△ABC中,∠B+∠C=180°- ∠BAC=80°,
所以∠EAN= 100-80=20°;
(2)因?yàn)?/span> DE垂直平分AB,
所以AE= BE,∠BAE=∠B,
同理可得∠CAN= ∠C,
所以∠EAN=∠BAE+∠CAN-∠BAC=(∠B+∠C)-∠BAC,
在△ABC中,∠B+∠C= 180°-∠BAC= 110°,
所以∠EAN=110°- 70°=40°;
(3)當(dāng)0<a<90°時(shí),∠EAN=180°-2a;
當(dāng)180°>a>90°時(shí),∠EAN=2a -180°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義新運(yùn)算“※”:a※b=2a+b則下列結(jié)論:①(-2)※5=1;②若x※(x-6)=0,則;③存在有理數(shù)y,使y※(y+1)=y※(y-1)成立;④若m※n=5,m※(-n)=3,則,其中正確的是 _______________(把所有正確結(jié)論的序號(hào)都選上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交AB于D,延長 AO交⊙O于E,連接CD,CE,若CE是⊙O的切線,解答下列問題:
(1)求證:CD是⊙O的切線;
(2)若平行四邊形OABC的兩邊長是方程的兩根,求平行四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,E是AB上一點(diǎn),線段DE與菱形對(duì)角線AC交于點(diǎn)F,點(diǎn)O是AC的中點(diǎn),EO的延長線交邊DC于點(diǎn)G
(1)求證:∠AED=∠FBC;
(2)求證:四邊形DEBG是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大型企業(yè)為了保護(hù)環(huán)境,準(zhǔn)備購買、兩種型號(hào)的污水處理設(shè)備共10臺(tái),用于同時(shí)治理不同成分的污水,若購買型6臺(tái),型4臺(tái)需112萬,購買型4臺(tái),型6臺(tái)則需108萬元.
(1)求出型、型污水處理設(shè)備的單價(jià);
(2)經(jīng)了解,一臺(tái)型設(shè)備每月可處理污水220噸,一臺(tái)型設(shè)備每月可處理污水190噸,如果該企業(yè)計(jì)劃用不超過106萬元的資金購買這兩種設(shè)備,而且使這兩種設(shè)備每月的污水處理量不低于2005噸,請(qǐng)通過計(jì)算說明這種方案是否可行.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】9歲的小芳身高1.36米,她的表姐明年想報(bào)考北京的大學(xué).表姐的父母打算今年暑假帶著小芳及其表姐先去北京旅游一趟,對(duì)北京有所了解.他們四人7月31日下午從無錫出發(fā),1日到4日在北京旅游,8月5日上午返回?zé)o錫.
無錫與北京之間的火車票和飛機(jī)票價(jià)如下:火車 (高鐵二等座) 全票524元,身高1.1~1.5米的兒童享受半價(jià)票;飛機(jī) (普通艙) 全票1240元,已滿2周歲未滿12周歲的兒童享受半價(jià)票.他們往北京的開支預(yù)計(jì)如下:
住宿費(fèi) (2人一間的標(biāo)準(zhǔn)間) | 伙食費(fèi) | 市內(nèi)交通費(fèi) | 旅游景點(diǎn)門票費(fèi) (身高超過1.2米全票) |
每間每天x元 | 每人每天100元 | 每人每天y元 | 每人每天120元 |
假設(shè)他們四人在北京的住宿費(fèi)剛好等于上表所示其他三項(xiàng)費(fèi)用之和,7月31日和8月5日合計(jì)按一天計(jì)算,不參觀景點(diǎn),但產(chǎn)生住宿、伙食、市內(nèi)交通三項(xiàng)費(fèi)用.
(1)他們往返都坐火車,結(jié)算下來本次旅游總共開支了13668元,求x,y的值;
(2)若去時(shí)坐火車,回來坐飛機(jī),且飛機(jī)成人票打五五折,其他開支不變,他們準(zhǔn)備了14000元,是否夠用? 如果不夠,他們準(zhǔn)備不再增加開支,而是壓縮住宿的費(fèi)用,請(qǐng)問他們預(yù)定的標(biāo)準(zhǔn)間房價(jià)每天不能超過多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個(gè),錯(cuò)誤的選法是( )
A.∠ADB=∠ADCB.∠B=∠CC.AB=ACD.DB=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按下面程序計(jì)算,即根據(jù)輸入的判斷是否大于500,若大于500則輸出,結(jié)束計(jì)算,若不大于500,則以現(xiàn)在的的值作為新的的值,繼續(xù)運(yùn)算,循環(huán)往復(fù),直至輸出結(jié)果為止.若開始輸入的值為正整數(shù),最后輸出的結(jié)果為656,則滿足條件的所有的值是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠A=90°+x°,∠B=90°﹣x°,∠CED=90°,4∠C﹣∠D=30°,射線EF∥AC.
(1)判斷射線EF與BD的位置關(guān)系,并說明理由;
(2)求∠C,∠D的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com