(2009•金平區(qū)模擬)如圖,已知:過(guò)?ABCD的對(duì)角線BD上一點(diǎn)O的直線分別交DA和BC的延長(zhǎng)線于E、F.請(qǐng)問:OE與OF相等嗎?若相等請(qǐng)證明,若不相等,需添加什么條件就能證得它們相等?請(qǐng)寫出你的想法,再證明之.

【答案】分析:當(dāng)O是BD上任意一點(diǎn)時(shí),OB和OD不一定相等,OE和OF也就沒有確定的關(guān)系;當(dāng)O是BD中點(diǎn)時(shí),可以利用已知條件容易證明△ODE≌△OEF,根據(jù)全等三角形的性質(zhì)就可以確定OE=OF.
解答:解:當(dāng)O是BD上任意一點(diǎn)時(shí),OE與OF不一定相等
當(dāng)O是BD中點(diǎn)時(shí),就可證得:OE=OF
證明:∵O是BD中點(diǎn)
∴OB=OD
又∵□ABCD中AD∥BC
∴∠ADB=∠DBC∠E=∠F,
∴△ODE≌△OEF
∴OE=OF
(本題答案不唯一)
點(diǎn)評(píng):此題是開放性試題,題目主要考查了全等三角形的性質(zhì)與判定、平行四邊形的性質(zhì),首先利用平行四邊形的性質(zhì)構(gòu)造全等條件,然后利用全等三角形的性質(zhì)解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•金平區(qū)模擬)如圖,在Rt△ABC中,∠A=90°,AB=8,AC=6.若動(dòng)點(diǎn)D從點(diǎn)B出發(fā),沿線段BA運(yùn)動(dòng)到點(diǎn)A為止,運(yùn)動(dòng)速度為每秒2個(gè)單位長(zhǎng)度.過(guò)點(diǎn)D作DE∥BC交AC于點(diǎn)E,設(shè)動(dòng)點(diǎn)D運(yùn)動(dòng)的時(shí)間為x秒,AE的長(zhǎng)為y.
(1)求出y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),△BDE的面積S有最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•金平區(qū)模擬)如圖,在8×8的正方形網(wǎng)格中,△AOB的頂點(diǎn)都在格點(diǎn)上.請(qǐng)?jiān)诰W(wǎng)格中畫出△OAB的一個(gè)位似圖形,使兩個(gè)圖形以點(diǎn)O為位似中心,且所畫圖形與△OAB的位似為2:1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年廣東省汕頭市金平區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2009•金平區(qū)模擬)已知反比例函數(shù)圖象過(guò)第二象限內(nèi)的點(diǎn)A(-2,m),AB⊥x軸于B,Rt△AOB面積為3.
(1)求k和m的值;
(2)若直線y=ax+b經(jīng)過(guò)點(diǎn)A,并且經(jīng)過(guò)反比例函的圖象上另一點(diǎn)C(n,-
①求直線y=ax+b解析式;
②設(shè)直線y=ax+b與x軸交于M,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年廣東省潮州市潮安縣松昌實(shí)驗(yàn)學(xué)校中考數(shù)學(xué)三模試卷(解析版) 題型:解答題

(2009•金平區(qū)模擬)已知反比例函數(shù)圖象過(guò)第二象限內(nèi)的點(diǎn)A(-2,m),AB⊥x軸于B,Rt△AOB面積為3.
(1)求k和m的值;
(2)若直線y=ax+b經(jīng)過(guò)點(diǎn)A,并且經(jīng)過(guò)反比例函的圖象上另一點(diǎn)C(n,-
①求直線y=ax+b解析式;
②設(shè)直線y=ax+b與x軸交于M,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年廣東省汕頭市金平區(qū)下學(xué)期初三數(shù)學(xué)聯(lián)考試卷(解析版) 題型:解答題

(2009•金平區(qū)模擬)在直角坐標(biāo)平面內(nèi),二次函數(shù)的圖象頂點(diǎn)為A(1,-4),且過(guò)點(diǎn)B(3,0),求該二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案