完成下列證明

如圖,AB=DC,∠A=∠D

求證:∠ABC=∠DCB.

  證明:連結(jié)AC、BD相交點O.

  在△ADB與△DAC中

  因為∠A=∠D(  )

  AD=________(  )

  AB=DC(  )

  所以△ADB≌△DAC(  )

  所以BD=________(  )

  在△ABC與△DCB中

  BD=CA(  )

  AB=DC(  )

  BC=________(  )

  所以△ABC≌△DCB(  )

  所以∠ABC=∠DCB(  )

答案:
解析:

已知 DA 公共邊 已知 SAS CA 全等三角形的對應(yīng)邊相等 已證 已知 CB 公共邊 SSS 全等三角形的對應(yīng)角相等


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、填空,完成下列證明過程.
如圖,△ABC中,∠B=∠C,D,E,F(xiàn)分別在AB,BC,AC上,且BD=CE,∠DEF=∠B,
求證:ED=EF.
證明:∵∠DEC=∠B+∠BDE(
三角形的一個外角等于與它不相鄰兩個內(nèi)角的和
),
又∵∠DEF=∠B(已知),
∴∠
BDE
=∠
CEF
(等式性質(zhì)).
在△EBD與△FCE中,
BDE
=∠
CEF
(已證),
BD
=
CE
(已知),
∠B=∠C(已知),
∴△EBD≌△FCE(ASA).
∴ED=EF(全等三角形的對應(yīng)邊相等).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、完成下列證明:
(1)如圖,已知AD⊥BC,EF⊥BC,∠1=∠2.求證:DG∥BA.
證明:∵AD⊥BC,EF⊥BC(已知)
∴∠EFB=∠ADB=90°
垂直定義

∴EF∥AD
同位角相等,兩直線平行

∴∠1=∠BAD
兩直線平行,同位角相等

又∵∠1=∠2(已知)
∠2=∠BAD
(等量代換)
∴DG∥BA
內(nèi)錯角相等,兩直線平行


(2)如圖,已知AB=AD,AC=AE,∠1=∠2,請說明BC=DE的理由.
解:∵∠1=∠2
∴∠1+
∠EAC
=∠2+
∠EAC
等式性質(zhì)

即∠BAC=∠DAE
在△ABC和△ADE中
AB=
AD
(已知)
∠BAC=∠DAE(已證)
AC
=AE(已知)
∴△ABC≌△ADE(
SAS

∴BC=DE(
全等三角形的對應(yīng)邊相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、完成下列證明,在括號內(nèi)填寫理由.
如圖,已知∠B+∠BCD=180°,∠B=∠D.求證:∠E=∠DFE.
證明:∵∠B+∠BCD=180°(
已知
),
∴AB∥CD  (
同旁內(nèi)角互補(bǔ),兩直線平行

∴∠B=∠DCE(
兩直線平行,同位角相等

又∵∠B=∠D( 已知 ),
∴∠DCE=∠D (
等量代換

∴AD∥BE(
內(nèi)錯角相等,兩直線平行

∴∠E=∠DFE(
兩直線平行,內(nèi)錯角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠1=∠2,∠5=∠6,∠3=∠4,試說明AE∥BC,AE∥BD.請完成下列證明過程.
證明:
∵∠5=∠6
(已知)
(已知)

∴AB∥CE
(內(nèi)錯角相等,兩直線平行)
(內(nèi)錯角相等,兩直線平行)

∴∠3=
∠BDC
∠BDC

∵∠3=∠4
∴∠4=∠BDC
(等量代換)
(等量代換)

AE
AE
∥BD
(同位角相等,兩直線平行)
(同位角相等,兩直線平行)

∴∠2=
∠ADB
∠ADB

∵∠1=∠2
∴∠1=
∠ADB
∠ADB
,
∴AD∥BC.

查看答案和解析>>

同步練習(xí)冊答案