將拋物線向左平移個單位長度,使之過點,求的值.

解析試題分析: 由題意知平移后的拋物線為,因為它經(jīng)過點 ,所以,,解得
,或又因為,所以,.
試題解析:由題意知:
平移后的拋物線為,
∵它經(jīng)過點 ,
,
解得:,或
又∵,
.
考點:1.拋物線圖象平移.2.待定系數(shù)法求解析式.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知拋物線經(jīng)過A(﹣3,0),B(1,0)兩點,與y軸交于點C,其頂點為D,對稱軸是直線l,l與x軸交于點H.

(1)求該拋物線的解析式;
(2)若點P是該拋物線對稱軸l上的一個動點,求△PBC周長的最小值;
(3)若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設點E的橫坐標為m,△ADF的面積為S.
①求S與m的函數(shù)關系式;
②S是否存在最大值?若存在,求出最大值及此時點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在矩形OABC中,點A(0,10),C(8,0).沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處.分別以OC, OA所在的直線為x軸,y軸建立平面直角坐標系,拋物線經(jīng)過O,D,C三點.

(1)求D的的坐標及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動.設運動時間為t秒,當t為何值時,以P、Q、C為頂點的三角形與△ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知關于的一元二次方程有實數(shù)根,為正整數(shù).
(1)求的值;
(2)當此方程有兩個非零的整數(shù)根時,將關于的二次函數(shù)的圖象向下平移8個單位,求平移后的圖象的解析式;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

為了落實國務院的指示精神,地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:. 設這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關系式;
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

甲車在彎路做剎車試驗,收集到的數(shù)據(jù)如下表所示:

速度(千米/時)
0
5
10
15
20
25

剎車距離(米)
0

2

6


(1)請用上表中的各對數(shù)據(jù)作為點的坐標,在如圖所示的坐標系中畫出剎車距離(米)與速度(千米/時)的函數(shù)圖象,并求函數(shù)的解析式;

(2)在一個限速為40千米/時的彎路上,甲、乙兩車相向而行,同時剎車,但還是相撞了.事后測得甲、乙兩車剎車距離分別為12米和10.5米,又知乙車剎車距離(米)與速度(千米/時)滿足函數(shù),請你就兩車速度方面分析相撞原因.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某工廠生產(chǎn)某品牌的護眼燈,并將護眼燈按質(zhì)量分成15個等級(等級越高,質(zhì)量越好.如:二級產(chǎn)品好于一級產(chǎn)品).若出售這批護眼燈,一級產(chǎn)品每臺可獲利21元,每提高一個等級每臺可多獲利潤1元,工廠每天只能生產(chǎn)同一個等級的護眼燈,每個等級每天生產(chǎn)的臺數(shù)如下表表示:

等級(x級)
一級
二級
三級

生產(chǎn)量(y臺/天)
78
76
74

(1)已知護眼燈每天的生產(chǎn)量y(臺)是等級x(級)的一次函數(shù),請直接寫出之間的函數(shù)關系式:_____;
(2)每臺護眼燈可獲利z(元)關于等級x(級)的函數(shù)關系式:______;
(3)若工廠將當日所生產(chǎn)的護眼燈全部售出,工廠應生產(chǎn)哪一等級的護眼燈,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù).

(1)當二次函數(shù)的圖象經(jīng)過坐標原點O(0,0)時,求二次函數(shù)的解析式;
(2)如圖,當m=2時,該拋物線與y軸交于點C,頂點為D,求C、D兩點的坐標;
(3)在(2)的條件下,x軸上是否存在一點P,使得PC+PD最短?若P點存在,求出P點的坐標;若P點不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知拋物線拋物線(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當n=1時,第1條拋物線與x軸的交點為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標為(              );
依此類推第n條拋物線yn的頂點坐標為(       ,       );
所有拋物線的頂點坐標滿足的函數(shù)關系是       ;
(3)探究下列結論:
①若用An-1An表示第n條拋物線被x軸截得得線段長,直接寫出A0A1的值,并求出An-1An;
②是否存在經(jīng)過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案