精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB是⊙O的直徑,PB與⊙O相切于點B,連接PA交⊙O于點C,連接BC.
(1)求證:∠BAC=∠CBP;
(2)求證:PB2=PCPA;
(3)當AC=6,CP=3時,求sin∠PAB的值.

【答案】
(1)解:∵AB是⊙O的直徑,PB與⊙O相切于點B,

∴∠ACB=∠ABP=90°,

∴∠A+∠ABC=∠ABC+∠CBP=90°,

∴∠BAC=∠CBP


(2)解:∵∠PCB=∠ABP=90°,

∠P=∠P,

∴△ABP∽△BCP,

∴PB2=PCPA


(3)解:∵PB2=PCPA,AC=6,CP=3,

∴PB2=9×3=27,

∴PB=3 ,

∴sin∠PAB= = =


【解析】(1)根據已知條件得到∠ACB=∠ABP=90°,根據余角的性質即可得到結論;(2)根據相似三角形的判定和性質即可得到結論;(3)根據三角函數的定義即可得到結論.
【考點精析】解答此題的關鍵在于理解切線的性質定理的相關知識,掌握切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑,以及對相似三角形的判定與性質的理解,了解相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】拋物線y=4x2﹣2ax+b與x軸相交于A(x1 , 0),B(x2 , 0)(0<x1<x2)兩點,與y軸交于點C.
(1)設AB=2,tan∠ABC=4,求該拋物線的解析式;
(2)在(1)中,若點D為直線BC下方拋物線上一動點,當△BCD的面積最大時,求點D的坐標;
(3)是否存在整數a,b使得1<x1<2和1<x2<2同時成立,請證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一次函數y=ax+b和反比例函數y= 在同一平面直角坐標系中的圖象如圖所示,則二次函數y=ax2+bx+c的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線相交于O.過點OEFBC分別交AB、ACEF.若∠BOC=130°,∠ABC:∠ACB=32,求∠AEF和∠EFC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在封閉圖形ABCD中,ADBC,且AD=4,三角形ABC的周長為14,將三角形ABC平移到三角形DEF的位置.

(1)指出平移的方向和平移的距離;

(2)求封閉圖形ABFD的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,點A,B的坐標分別為(-1,0),(3,0),現同時將點A,B分別向上平移2個單位長度,再向右平移1個單位長度,分別得到點A,B的對應點C,D,連接AC,BD,CD.

(1)求點C,D的坐標及S四邊形ABDC.

(2)y軸上是否存在一點Q,連接QA,QB,使SQAB=S四邊形ABDC?若存在這樣一點,求出點Q的坐標;若不存在,試說明理由.

(3)如圖②,點P是線段BD上的一個動點,連接PC,PO,當點PBD上移動時(不與B,D重合),給出下列結論:①的值不變,②的值不變,其中有且只有一個是正確的,請你找出這個結論并求其值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線 y=x+1 與 y 軸交于點 A1,以 OA1為邊,在 y 軸右側作正方形 OA1B1C1,延長 C1B1交直線 y=x+1 于點 A2,再以 C1A2為邊作正方形,…,這些正方形與直線 y=x+1 的交點分別為 A1,A2,A3,…,An,則點 Bn 的坐標為_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將兩個斜邊長相等的直角三角形紙片如圖放置,其中∠ACB=∠CED=90°∠A=45°∠D=30°

1∠CBA= ;

2)把△DCE繞點C順時針旋轉15°得到△D1CE1,如圖,連接D1B,則∠E1D1B=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.

(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°,
①若AB=CD=1,AB//CD,求對角線BD的長.
②若AC⊥BD,求證:AD=CD.
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點P是對角線BD上一點,且BP=2PD,過點P作直線分別交邊AD,BC于點E,F,使四邊形ABFE是等腰直角四邊形.求AE的長.

查看答案和解析>>

同步練習冊答案