20.設(shè)三角形的三邊長(zhǎng)分別等于下列各組數(shù),能構(gòu)成直角三角形的是( 。
A.1,2,3B.4,5,6C.6,8,9D.7,24,25

分析 判斷是否可以作為直角三角形的三邊長(zhǎng),則判斷兩小邊的平方和是否等于最長(zhǎng)邊的平方即可.

解答 解:A、12+22≠32,不是直角三角形,故此選項(xiàng)錯(cuò)誤;
B、42+52≠62,不是直角三角形,故此選項(xiàng)錯(cuò)誤;
C、62+82≠92,不是直角三角形,故此選項(xiàng)錯(cuò)誤;
D、72+242=252,是直角三角形,故此選項(xiàng)正確.
故選:D.

點(diǎn)評(píng) 此題主要考查了勾股定理逆定理,關(guān)鍵是掌握勾股定理的逆定理:已知△ABC的三邊滿足a2+b2=c2,則△ABC是直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某商品交易會(huì)上,一商人將每件進(jìn)價(jià)為5元的紀(jì)念品,按每件9元出售,每天可售出32件.他想采用提高售價(jià)的辦法來(lái)增加利潤(rùn),經(jīng)試驗(yàn),發(fā)現(xiàn)這種紀(jì)念品每件提價(jià)2元,每天的銷售量會(huì)減少8件.
(1)當(dāng)售價(jià)定為多少元時(shí),每天的利潤(rùn)為140元?
(2)寫(xiě)出每天所得的利潤(rùn)y(元)與售價(jià)x(元/件)之間的函數(shù)關(guān)系式,每件售價(jià)定為多少元,才能使一天所得的利潤(rùn)最大?最大利潤(rùn)是多少元?(利潤(rùn)=(售價(jià)-進(jìn)價(jià))×售出件數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某經(jīng)銷商用8000元購(gòu)進(jìn)了一種襯衫,他以每件58元的價(jià)格出售,很快售完,又用17600元購(gòu)進(jìn)同種襯衫,數(shù)量是第一次的2倍,但每件進(jìn)價(jià)比第一次多4元,服裝店仍按每件58元出售,全部售完.
(1)設(shè)他第一次購(gòu)進(jìn)這種襯衫的價(jià)格為x元/件,則他第一次購(gòu)進(jìn)這種襯衫$\frac{8000}{x}$件,他第二次購(gòu)進(jìn)這種襯衫$\frac{17600}{x+4}$件;
(2)問(wèn)他在這次服裝生意中共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)如圖1,已知,AB∥CD,EF分別交AB、CD于點(diǎn)E、F,EG、EH分別平分∠AEF、∠BEF交CD于G、H,則EG與EH的位置關(guān)系是垂直,∠EGH與∠EHG關(guān)系是互余;
(2)如圖2,已知:AB∥CD∥EF,BE、DE分別平分∠ABD、∠BDC,求證:BE⊥ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

15.關(guān)于x的方程(a-2)${x}^{{a}^{2}-2}$+3ax+1=0是一元二次方程,則a=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,在△ABC中,∠B=40°,∠C=30°,延長(zhǎng)BA至點(diǎn)D,則∠CAD的大小為70°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某賓館客房部有60個(gè)房間供游客居住,當(dāng)每個(gè)房間的定價(jià)為每天200元時(shí),所有房間剛好可以住滿,根據(jù)經(jīng)驗(yàn)發(fā)現(xiàn),每個(gè)房間的定價(jià)每增加10元,就會(huì)有1個(gè)房間空閑,對(duì)有游客入住的房間,賓館需對(duì)每個(gè)房間支出每天20元的各種費(fèi)用.設(shè)每個(gè)房間的定價(jià)增加x元,每天的入住量為y個(gè),客房部每天的利潤(rùn)為w元.
(1)求y與x的函數(shù)關(guān)系式;
(2)求w與x的函數(shù)關(guān)系式,并求客房部每天的最大利潤(rùn)是多少?
(3)當(dāng)x為何值時(shí),客房部每天的利潤(rùn)不低于14000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.計(jì)算:
(1)(-$\frac{1}{2}$)-1-$\sqrt{3}$+(1-$\sqrt{2}$)0-|$\sqrt{3}$-2|
(2)[(x+2y)(x-2y)-(x+4y)2]÷4y.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知代數(shù)式m2+m+1=0,那么代數(shù)式2018-2m2-2m的值是(  )
A.2016B.-2016C.2020D.-2020

查看答案和解析>>

同步練習(xí)冊(cè)答案