等邊三角形的邊長為2,則該三角形的面積為( 。
A、4
3
B、2
3
C、
3
D、3
分析:如圖,作CD⊥AB,則CD是等邊△ABC底邊AB上的高,根據(jù)等腰三角形的三線合一,可得AD=1,所以,在直角△ADC中,利用勾股定理,可求出CD的長,代入面積計(jì)算公式,解答出即可;
解答:精英家教網(wǎng)解:作CD⊥AB,
∵△ABC是等邊三角形,AB=BC=AC=2,
∴AD=1,
∴在直角△ADC中,
CD=
AC2AD2
=
4-1
=
3
,
∴S△ABC=
1
2
×2×
3
=
3

故選C.
點(diǎn)評:本題主要考查了等邊三角形的性質(zhì)及勾股定理的應(yīng)用,根據(jù)題意,畫出圖形可利于解答,體現(xiàn)了數(shù)形結(jié)合思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖一,等邊三角形MNP的邊長為1,線段AB的長為4,點(diǎn)M與A重合,點(diǎn)N在線段AB上.△MNP沿線段AB按A→B的方向滾動,直至△MNP中有一個點(diǎn)與點(diǎn)B重合為止,則點(diǎn)P經(jīng)過的路程為
 

(2)如圖三,正方形MNPQ的邊長為1,正方形ABCD的邊長為2,點(diǎn)M與點(diǎn)A重合,點(diǎn)N在線段AB上,點(diǎn)P在正方形內(nèi)部,正方形MNPQ沿正方形ABCD的邊按A→B→C→D→A→…的方向滾動,始終保持M,N,P,Q四點(diǎn)在正方形內(nèi)部或邊界上,直至正方形MNPQ回到初始位置為止,則點(diǎn)P經(jīng)過的最短路程為
 

精英家教網(wǎng)
(注:以△MNP為例,△MNP沿線段AB按A→B的方向滾動指的是先以頂點(diǎn)N為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)P落在線段AB上時(shí),再以頂點(diǎn)P為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù).多邊形沿直線滾動與此類似.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果等邊三角形的邊長為a,那么它的內(nèi)切圓半徑為(  )
A、
a
2
B、
3
6
a
C、
3
3
a
D、
3
2
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

等邊三角形的邊長為a,P是等邊三角形內(nèi)一點(diǎn),則P到三邊的距離之和是
3
2
a
3
2
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果等邊三角形的邊長為4,那么連接各邊中點(diǎn)所成的三角形的周長為(  )

查看答案和解析>>

同步練習(xí)冊答案