【題目】已知函數(shù)y=kx+b的圖象與x軸、y軸分別交于點(diǎn)A(12,0),與函數(shù)y=x的圖象交于點(diǎn)E,點(diǎn)E的橫坐標(biāo)為3.
(1)求函數(shù)y=kx+b的表達(dá)式;
(2)在x軸上有一點(diǎn)F(a,0),過(guò)點(diǎn)F作x軸的垂線,分別交函數(shù)y=kx+b的圖象和函數(shù)y=x的圖象于點(diǎn)C,D,若四邊形OBDC是平行四邊形,求a的值.
【答案】(1)y=﹣x+4;(2)a的值為6.
【解析】
(1)將x=3代入y=x中求出y值,即得出點(diǎn)E的坐標(biāo),結(jié)合點(diǎn)A、E的坐標(biāo),利用待定系數(shù)法即可求出直線AB的解析式;
(2)由點(diǎn)F的坐標(biāo)可表示出點(diǎn)C、D的坐標(biāo),由此即可得出線段CD的長(zhǎng)度,根據(jù)平行四邊形的判定定理即可得出CD=OB,即得出關(guān)于a的方程,解方程即可得出結(jié)論.
解:(1)把x=3代入y=x,得y=3,
∴E(3,3),
把A(12,0)、E(3,3)代入y=kx+b中,
得:,
解得:,
∴直線AB的解析式為y=﹣x+4.
(2)由題意可知,C、D的橫坐標(biāo)為a,
∴C(a,﹣a+4),D(a,a),
∴CD=|a﹣(﹣a+4)|=|a﹣4|.
若四邊形OBDC是平行四邊形,則CD=OB=4,
即|a﹣4|=4,
解得:a=6或a=0(舍去),
故a的值為6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD坐標(biāo)為A(0,0),B(0,3),C(3,5),D(5,0).
(1)請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中畫(huà)出四邊形ABCD;
(2)把四邊形ABCD先向上平移2個(gè)單位,再向左平移3個(gè)單位得到四邊形,求平移后各頂點(diǎn)的坐標(biāo);
(3)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)是1),△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問(wèn)題:
⑴ 作出△繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△AB1C1,再作出△AB1C1關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的△A1B2C2.
(2)請(qǐng)直接寫(xiě)出以A1、B2、C2為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo) .(寫(xiě)出一個(gè)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板中的兩塊直角三角形的直角頂點(diǎn)0按圖1方式疊放在一起(其中∠C=30°,∠CDO=60°;∠OAB=∠OBA=45°).△COD繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)一周,旋轉(zhuǎn)的速度為每秒10°,若旋轉(zhuǎn)時(shí)間為t秒,請(qǐng)回答下列問(wèn)題:(請(qǐng)直接寫(xiě)出答案)
(1)當(dāng)0<t<9時(shí)(如圖2),∠BOC與∠AOD有何數(shù)量關(guān)系
(2)當(dāng)t為何值時(shí),邊OA∥CD?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)M是AB的中點(diǎn),點(diǎn)P在MB上.分別以AP,PB為邊,作正方形APCD和正方形PBEF,連結(jié)MD和ME.設(shè)AP=a,BP=b,且a+b=10,ab=20.則圖中陰影部分的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)某校八年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷(xiāo)售工作,已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話。
(1)求每天的銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式。(6分)
(2)該超市銷(xiāo)售這種水果每天獲取的利潤(rùn)為1040元,那么銷(xiāo)售單價(jià)為多少元?(6分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“愛(ài)滿金陵”慈善一日捐活動(dòng)中,學(xué)校團(tuán)總支為了了解本校寫(xiě)生的捐款情況,隨機(jī)抽取了名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成統(tǒng)計(jì)圖.
()這名同學(xué)捐款的眾數(shù)為__________元,中位數(shù)為__________.
()求這名同學(xué)捐款的平均數(shù).
()該校共有名學(xué)生參與捐款,請(qǐng)估計(jì)該校學(xué)生的捐款總數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)的圖象過(guò)點(diǎn),且頂點(diǎn)坐標(biāo)為.
求此二次函數(shù)的表達(dá)式;
畫(huà)出此函數(shù)圖象,并根據(jù)函數(shù)圖象寫(xiě)出:當(dāng)時(shí),y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的三條角平分線相交于點(diǎn)I,過(guò)點(diǎn)I作DI⊥IC,交AC于點(diǎn)D.
(1)如圖①,求證:∠AIB=∠ADI;
(2)如圖②,延長(zhǎng)BI,交外角∠ACE的平分線于點(diǎn)F.
①判斷DI與CF的位置關(guān)系,并說(shuō)明理由;
②若∠BAC=70°,求∠F的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com