【題目】菱形中,,上一個動點,,連接并延長交延長線于點.

1)如圖1,求證:;

2)當(dāng)為直角三角形時,求的長;

3)當(dāng)的中點,求的最小值.

【答案】(1)詳見解析;(2)當(dāng)為直角三角形時,的長是;(3).

【解析】

1)先根據(jù)菱形的性質(zhì)證,再證,由全等的性質(zhì)可得,進而得出結(jié)論;

2)分以下兩種情況討論:①,②;

3)過,過,當(dāng)三點在同一直線上且的值最小,即為的長.

解:(1四邊形是菱形,

,

.

中,

,

.

2)連接于點,

四邊形是菱形,

,.

又∠ABC=60°,∴△ABC為等邊三角形,

,.

.

.

.

當(dāng)時,有,

中,

,

設(shè),

,

,解得.

.

.

當(dāng)時,有,

,

是等腰直角三角形.

.

綜上:當(dāng)為直角三角形時,的長是.

3)過,過,

中,

的中點,

.

當(dāng)三點在同一直線上且

的值最小,即為的長.

中,

,,

,

.

的最小值是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC的邊長為4,AD是BC邊上的中線,FAD邊上的動點,EAC邊上一點,若AE2,當(dāng)EF+CF取得最小值時,則∠BCF的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).

求(1)拋物線的解析式;

(2)兩盞景觀燈P1、P2之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)

將一張正方形紙片按如圖步驟①②,沿虛線對折2次,然后沿圖的虛線剪去一個角,展開鋪平后得到圖,若圖,,則四邊形與原正方形紙面積比為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011內(nèi)蒙古赤峰,7,3分)早晨,小張去公園晨練,下圖是他離家的距離y(

)與時間t(分鐘)的函數(shù)圖象,根據(jù)圖象信息,下列說法正確的是 ( )

A.小張去時所用的時間多于回家所用的時間B.小張在公園鍛煉了20分鐘

C.小張去時的速度大于回家的速度 D.小張去時走上坡路,回家時走下坡路

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將弧BC沿弦BC折疊交直徑AB于點D,若AD=2,DB=3,則BC的長是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三邊分別切⊙OD,E,F(xiàn).

(1)若∠A=40°,求∠DEF的度數(shù);

(2)AB=AC=13,BC=10,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩位老師同住一小區(qū),該小區(qū)與學(xué)校相距.甲從小區(qū)步行去學(xué)校,出發(fā)分鐘后乙再出發(fā),乙從小區(qū)先騎公共自行車,騎行若干米到達還車點后,立即步行走到學(xué)校.已知乙騎車的速度為/分,甲步行的速度比乙步行的速度每分鐘快.設(shè)甲步行的時間為(分),圖1中線段與折線分別表示甲、乙離小區(qū)的路程(米)與甲步行時間(分)的函數(shù)關(guān)系的圖象;圖2表示甲、乙兩人之間的距離(米)與甲步行時間 (分)的函數(shù)關(guān)系的圖象(不完整),根據(jù)圖1和圖2中所給的信息,解答下列問題:

1)求甲步行的速度和乙出發(fā)時甲離開小區(qū)的路程;

2)求直線的解析式;

3)在圖2中,畫出當(dāng)時,關(guān)于的函數(shù)的大致圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知正方形ABCD的邊CD在正方形DEFG的邊DE上,連接AE,GC

1)試猜想AEGC有怎樣的位置關(guān)系,并證明你的結(jié)論;

2)將正方形DEFG繞點D按順時針方向旋轉(zhuǎn),使點E落在BC邊上,如圖2,連接AEGC.你認為(1)中的結(jié)論是否還成立?若成立,給出證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案