【題目】如圖,在四邊形ABCD中,AD∥BC,AD=8,BC=16,點(diǎn)P以每秒1個單位長度的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)D運(yùn)動;點(diǎn)Q同時以每秒2個單位長度的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動,點(diǎn)P停止運(yùn)動時,點(diǎn)Q也隨之停止運(yùn)動,設(shè)運(yùn)動時間為t秒.
(1)當(dāng)t為多少時,以點(diǎn)ABQD為頂點(diǎn)的四邊形是平行四邊形?
(2)當(dāng)t為多少時,以點(diǎn)ABQP為頂點(diǎn)的四邊形是平行四邊形?
【答案】(1)t為4秒時(2)t為秒時
【解析】
試題分析:(1)當(dāng)四邊形ABQD為平行四邊形時,AD=BQ=8,由題意得出方程,解方程即可;
(2)當(dāng)四邊形ABQP為平行四邊形時,AP=BQ; 由題意得出方程,解方程即可.
解:(1)∵當(dāng)四邊形ABQD為平行四邊形時,AD=BQ=8,
又∵Q點(diǎn)速度為2個單位/秒,
∴16﹣2t=8,
解得:t=4,
即當(dāng)t為4秒時,以點(diǎn)ABQD為頂點(diǎn)的四邊形是平行四邊形;
(2)∵當(dāng)四邊形ABQP為平行四邊形時,AP=BQ;
又∵點(diǎn)P、Q速度分別為1個單位/秒、2個單位/秒,AD=8,BC=16,
∴t=16﹣2t,
解得:t=,
即當(dāng)t為秒時,以點(diǎn)ABQP為頂點(diǎn)的四邊形是平行四邊形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系XOY中,有A(3 , 2) ,B (-1 ,-4 ),P是X軸上的一點(diǎn),Q是Y軸上的一點(diǎn),若以點(diǎn)A,B,P,Q四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,則Q點(diǎn)的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明與小華本學(xué)期都參加了5次數(shù)學(xué)考試(總分均為100分),數(shù)學(xué)老師想判斷這兩位同學(xué)的數(shù)學(xué)成績誰更穩(wěn)定,在作統(tǒng)計(jì)分析時,老師需比較這兩人5次數(shù)學(xué)成績的( )
A. 平均數(shù) B. 方差 C. 眾數(shù) D. 中位數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】彈簧掛上物體后會伸長,已知一彈簧的長度(cm)與所掛物體的重量(kg)之間的關(guān)系如下表:
所掛物體的重量(kg) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
彈簧的長度(cm) | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 | 15 | 15.5 |
(1)當(dāng)所掛物體的重量為3kg時,彈簧的長度是_____________cm;
(2)如果所掛物體的重量為xkg,彈簧的長度為ycm,根據(jù)上表寫出y與x的關(guān)系式;
(3)當(dāng)所掛物體的重量為5.5kg時,請求出彈簧的長度。
(4)如果彈簧的最大伸長長度為20cm,則該彈簧最多能掛多重的物體?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果線段AB=13cm,MA+MB=17 cm,那么下面說法中正確的是 ( ).
A. M點(diǎn)在線段AB上 B. M點(diǎn)在直線AB上
C. M點(diǎn)在直線AB外 D. M點(diǎn)可能在直線AB上,也可能在直線AB外
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課外興趣小組活動時,老師提出了如下問題:
(1)如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:
延長AD到E,使得DE=AD,再連接BE(或?qū)?/span>△ACD繞點(diǎn)D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.
感悟:解題時,條件中若出現(xiàn)“中點(diǎn)”“中線”字樣,可以考慮構(gòu)造以中點(diǎn)為對稱中心的中心對稱圖形或全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.
(2)問題解決:
受到(1)的啟發(fā),請你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF.
①求證:BE+CF>EF;②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明;
(3)問題拓展:
如圖3,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點(diǎn)作∠EDF為60°角,角的兩邊分別交AB、AC于E、F兩點(diǎn),連接EF,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中的假命題是( )
A.一組鄰邊相等的平行四邊形是菱形
B.一組鄰邊相等的矩形是正方形
C.一組對邊平行且相等的四邊形是平行四邊形
D.一組對邊相等且有一個角是直角的四邊形是矩形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com