【題目】如圖,△ABC中,∠ACB=90°,點F在AC延長線上,,DE是△ABC中位線,如果∠1=30°,DE=2,則四邊形AFED的周長是________
【答案】16.
【解析】
試題根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得DE=AC,從而得到CF=DE,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半可得EF=2CF,利用勾股定理列式求出CE,再求出BC,然后利用勾股定理列式求出AB,從而得到AD的長度,最后根據(jù)四邊形的周長的定義列式計算即可得解:
∵DE是△ABC中位線,∴DE=AC.
∵CF=AC,∴CF=DE=2.
∵∠1=30°,∠ACB=90°,∴EF=2CF=2×2=4.
由勾股定理得,.
∴BC=2CE=.
又∵AC=2DE=2×2=4,
∴.
∴AD=AB=4,
∴四邊形AFED的周長=4+(4+2)+4+2=16.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線,點在上,點、點在上,的角平分線交于點,過點作于點,己知,則的度數(shù)為( )
A. 26°B. 32°C. 36°D. 42°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2臺大收割機和5臺小收割機同時工作2 h共收割小麥3.6hm2,3臺大收割機和2臺小收割機同時工作5 h共收割小麥8 hm2.1臺大收割機和1臺小收割機每小時各收割小麥多少公頃?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的菱形ABCD中,BD=4,E、F分別是AD、CD上的動點(包含端點),且AE+CF=4,連接BE、EF、FB.
(1)試探究BE與BF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)求EF的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為6cm的正方形ABCD中,動點P從點A出發(fā),沿線段AB以每秒1cm的速度向點B運動;同時動點Q從點B出發(fā),沿線段BC以每秒2cm的速度向點C運動.當點Q到達C點時,點P同時停止,設(shè)運動時間為t秒.(注:正方形的四邊長都相等,四個角都是直角)
(1)CQ的長為______cm(用含的代數(shù)式表示);
(2)連接DQ并把DQ沿DC翻折,交BC延長線于點F.連接DP、DQ、PQ.
①若,求t的值.
②當時,求t的值,并判斷與是否全等,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=50°,∠C=110°,∠D=90°,AE⊥BC,AF是∠BAD的平分線,與邊BC交于點F.求∠EAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,我們定義直線為拋物線、b、c為常數(shù),的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.
已知拋物線與其“夢想直線”交于A、B兩點點A在點B的左側(cè),與x軸負半軸交于點C.
填空:該拋物線的“夢想直線”的解析式為______,點A的坐標為______,點B的坐標為______;
如圖,點M為線段CB上一動點,將以AM所在直線為對稱軸翻折,點C的對稱點為N,若為該拋物線的“夢想三角形”,求點N的坐標;
當點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖:在四邊形ABCD中,E是AB上的一點,△ADE和△BCE都是等邊三角形,點P、Q、M、N分別為AB、BC、CD、DA的中點,四邊形MNPQ什么形狀?說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com