【題目】如圖,已知點A(2,2)關(guān)于直線y=k(k>0)的對稱點恰好落在x軸的正半軸上,則k的值是_____

【答案】

【解析】分析:

如圖,設(shè)點A關(guān)于直線y=kx的對稱點為點E,連接OA,連接AE交直線y=kx于點D,由已知條件易得OA=,由軸對稱的性質(zhì)可得OE=AE=,由此可得點E的坐標為,根據(jù)線段的中點坐標公式可得點D的坐標,將點D的坐標代入直線y=kx即可求得k的值.

詳解

如圖,設(shè)點A關(guān)于直線y=kx的對稱點為點E,連接OA,連接AE交直線y=kx于點D,

∵點A的坐標為(2,2),

∴OA=

E是點A關(guān)于直線y=kx的對稱點,且點Ex軸的正半軸上,

∴OE=OA=,

E的坐標為

由折疊的性質(zhì)可知D是線段AE的中點,

D在坐標為:,

將點D在坐標為:代入y=kx

,解得:.

故答案為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABC中,BC=4,以線段AB為邊作ABD,使得AD=BD,連接DC,再以DC為邊作CDE,使得DC=DE,CDE=ADB=α.

(1)如圖2,當∠ABC=45°α=90°時,用等式表示線段AD,DE之間的數(shù)量關(guān)系;

(2)將線段CB沿著射線CE的方向平移,得到線段EF,連接BF,AF.

①若α=90°,依題意補全圖3,求線段AF的長;

②請直接寫出線段AF的長(用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋里有分別標注2、4、6的3個小球(小球除數(shù)字不同外,其余都相同),另有3張背面完全一樣、正面分別寫有數(shù)字6、7、8的卡片.現(xiàn)從口袋中任意摸出一個小球,再從這3張背面朝上的卡片中任意摸出一張卡片.

(1)請你用列表或畫樹狀圖的方法,表示出所有可能出現(xiàn)的結(jié)果;

(2)小紅和小莉做游戲,制定了兩個游戲規(guī)則:

規(guī)則1:若兩次摸出的數(shù)字,至少有一次是“6”,小紅贏;否則,小莉贏.

規(guī)則2:若摸出的卡片上的數(shù)字是球上數(shù)字的整數(shù)倍時,小紅贏;否則,小莉贏.

小紅要想在游戲中獲勝,她會選擇哪一種規(guī)則,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】居民區(qū)內(nèi)的廣場舞引起媒體關(guān)注,遼寧都市頻道為此進行過專訪報道.小平想了解本小區(qū)居民對廣場舞的看法,進行了一次抽樣調(diào)查,把居民對廣場舞的看法分為四個層次:A.非常贊同;B.贊同但要有時間限制;C.無所謂;D.不贊同.并將調(diào)查結(jié)果繪制了圖1和圖2兩幅不完整的統(tǒng)計圖.

請你根據(jù)圖中提供的信息解答下列問題:

1)求本次被抽查的居民有多少人?

2)將圖1和圖2補充完整;

3)求圖2“C”層次所在扇形的圓心角的度數(shù);

4)估計該小區(qū)4000名居民中對廣場舞的看法表示贊同(包括A層次和B層次)的大約有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBCABAC,點EBC的中點,AEBD交于點F,且FAE的中點.

(Ⅰ)求證:四邊形AECD是菱形;(Ⅱ)若AC4,AB5,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形A1B1C1D1的面積為4,順次連結(jié)各邊中點得到四邊形A2B2C2D2,再順次連結(jié)四邊形A2B2C2D2四邊中點得到四邊形A3B3C3D3,依此類推,則四邊形AnBnCnDn的面積是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知均是等邊三角形,點在同一條直線上,交于點交于點交于點,連接,則下列結(jié)論:①;②;③;④,其中正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點,∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DBC邊的中點,分別過B、C做射線AD的垂線,垂足分別為E、F,連接BF、CE

1)求證:四邊形BECF是平行四邊形;

2)我們知道SABDSACD,若AFFD,在不添加輔助線的條件下,直接寫出與△ABD、△ACD面積相等的所有三角形.

查看答案和解析>>

同步練習冊答案