【題目】如圖,一次函數(shù)的圖像與正比例函數(shù)為常數(shù),且)的圖像都經(jīng)過

1)求點(diǎn)的坐標(biāo)及正比例函數(shù)的表達(dá)式;

2)利用函數(shù)圖像比較的大小并直接寫出對(duì)應(yīng)的的取值范圍.

【答案】1)點(diǎn)A坐標(biāo)為(1,2);y2=2x;(2)當(dāng)x1時(shí),y1y2;當(dāng)x=1時(shí),y1=y2;當(dāng)x1時(shí),y1y2

【解析】

1)將A點(diǎn)代入一次函數(shù)解析式求出m的值,然后將A點(diǎn)坐標(biāo)代入正比例函數(shù)解析式,求出k的值即可得出正比例函數(shù)的表達(dá)式;
2)結(jié)合函數(shù)圖象即可判斷y1y2的大小及相應(yīng)的x的取值范圍.

解:(1)將A的坐標(biāo)代入y1=x+1,
得:m+1=2
解得:m=1,
故點(diǎn)A坐標(biāo)為(1,2),
將點(diǎn)A的坐標(biāo)代入:y2=kx,
得:2=k
解得:k=2,
則反比例函數(shù)的表達(dá)式y2=2x;
2)結(jié)合函數(shù)圖象可得:
當(dāng)x1時(shí),y1y2;
當(dāng)x=1時(shí),y1=y2
當(dāng)x1時(shí),y1y2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線的解析式為,與軸、軸分別交于點(diǎn)、點(diǎn),直線的解析式為,與軸、軸分別交于點(diǎn)、點(diǎn),直線交于點(diǎn)

    

(1)求點(diǎn)的坐標(biāo);

(2)若直線上存在點(diǎn),使得,請(qǐng)求出點(diǎn)的坐標(biāo);

(3)軸右側(cè)、點(diǎn)左側(cè)有一條平行于軸的動(dòng)直線,分別與,交于點(diǎn),,軸上是否存在點(diǎn),使為等腰直角三角形?若存在,請(qǐng)求出滿足條件的所有點(diǎn)的坐標(biāo);若不存在;請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了美化綠化校園,計(jì)劃購(gòu)買甲,乙兩種花木共100棵綠化操場(chǎng),其中甲種花木每棵60元,乙種花木每棵80元.

1)若購(gòu)買甲,乙兩種花木剛好用去7200元,則購(gòu)買了甲,乙兩種花木各多少棵?

2)如果購(gòu)買乙種花木的數(shù)量不少于甲種花木的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買方案使所需費(fèi)用最低,并求出該購(gòu)買方案所需總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,在上取點(diǎn),延長(zhǎng),使得;在上取一點(diǎn),延長(zhǎng),使得,按此做法進(jìn)行下去,第n個(gè)等腰三角形的底角的度數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖像與軸、軸分別交于點(diǎn),以為邊在第二象限內(nèi)作等邊

1)求點(diǎn)的坐標(biāo);

2)在第二象限內(nèi)有一點(diǎn),使,求點(diǎn)的坐標(biāo);

3)將沿著直線翻折,點(diǎn)落在點(diǎn)處;再將繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)15°,點(diǎn)落在點(diǎn)處,過點(diǎn)軸于.求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館擁有客房100間,經(jīng)營(yíng)中發(fā)現(xiàn):每天入住的客房數(shù)y()與房?jī)r(jià)x()(180≤x≤300)滿足一次函數(shù)關(guān)系,部分對(duì)應(yīng)值如下表:

x()

180

260

280

300

y()

100

60

50

40

(1)yx之間的函數(shù)表達(dá)式;

(2)已知每間入住的客房,賓館每日需支出各種費(fèi)用100元;每間空置的客房,賓館每日需支出各種費(fèi)用60元.當(dāng)房?jī)r(jià)為多少元時(shí),賓館當(dāng)日利潤(rùn)最大?求出最大利潤(rùn).(賓館當(dāng)日利潤(rùn)=當(dāng)日房費(fèi)收入-當(dāng)日支出)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方形的長(zhǎng)為15,寬為10,高為20,點(diǎn)離點(diǎn)的距離為5,螞蟻如果要沿著長(zhǎng)方形的表面從點(diǎn)爬到點(diǎn),需要爬行的最短距離是(

A.35B.C.25D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x+b的圖象經(jīng)過A(0,﹣2),B(1,0)兩點(diǎn),與反比例函數(shù)y=的圖象在第一象限內(nèi)的交點(diǎn)為M(m,4).

(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

(2)在x軸上是否存在點(diǎn)P,使AM⊥MP?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一邊長(zhǎng)為4正方形放在平面直角坐標(biāo)系中,其中為原點(diǎn),點(diǎn)、分別在軸、軸上,為射線上任意一點(diǎn)

1)如圖1,若點(diǎn)坐標(biāo)為,連接于點(diǎn),則的面積為__________

2)如圖2,將沿翻折得,若點(diǎn)在直線圖象上,求出點(diǎn)坐標(biāo);

3)如圖3,將沿翻折得,和射線交于點(diǎn),連接,若,平面內(nèi)是否存在點(diǎn),使得是以為直角邊的等腰直角三角形,若存在,請(qǐng)求出所有點(diǎn)坐標(biāo):若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案