【題目】(1)如圖1,已知O是直線CD上的點,OA平分∠BOC,OE平分∠BOD,∠AOC=35°,求∠BOE,∠COE的度數(shù).
(2)如圖2,已知AB=16cm,C是AB上一點,點D是線段AC的中點,點E是線段BC的中點,求線段DE的長度.
【答案】(1)125°;(2)8cm.
【解析】試題分析:(1)已知OA平分∠BOC,∠AOC=70°,根據(jù)角平分線的定義可得∠BOD=110°,再由OE平分∠BOD,可得∠BOE=55°,根據(jù)∠COE=∠BOC+∠BOE即可求得∠COE的度數(shù);(2)已知點D是線段AC的中點,點E是線段BC的中點,根據(jù)線段中點的定義可得DC=AC,CE=CB,根據(jù)DE=DC+CE=(AC+CB)即可求得DE的長度.
試題解析:
(1)∵OA平分∠BOC,
∴∠BOC=2∠AOC=70°,
∴∠BOD=110°,
∵OE平分∠BOD,
∴∠BOE=55°,
∴∠COE=∠BOC+∠BOE=125°;
(2)∵點D是線段AC的中點,點E是線段BC的中點,
∴DC=AC,CE=CB,
∴DE=DC+CE=(AC+CB)=8cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=120°,OC在它的內(nèi)部,且把∠AOB分成1:3的兩個角,那么∠AOC的度數(shù)為( )
A.40°
B.40°或80°
C.30°
D.30°或90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線AB交⊙O于C、D兩點,CE是⊙O的直徑,CF平分∠ACE交⊙O于點F,連接EF,過點F作FG∥ED交AB于點G.
(1)求證:直線FG是⊙O的切線;
(2)若FG=4,⊙O的半徑為5,求四邊形FGDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市在道路改造過程中,需要鋪設(shè)一條長為1000米的管道,決定由甲、乙兩個工程隊來完成這一工程.已知甲工程隊比乙工程隊每天能多鋪設(shè)20米,且甲工程隊鋪設(shè)350米所用的天數(shù)與乙工程隊鋪設(shè)250米所用的天數(shù)相同.
(1)甲、乙工程隊每天各能鋪設(shè)多少米?
(2)如果要求完成該項工程的工期不超過10天,那么為兩工程隊分配工程量的方案有幾種?請你幫助設(shè)計出來(工程隊分配工程量為正整百數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ ABC中,∠ ABC、∠ ACB的平分線交于點O。
(1)若∠ABC=40°,∠ ACB=50°,則∠BOC=_______
(2)若∠ABC+∠ ACB=lO0°,則∠BOC="________"
(3)若∠A=70°,則∠BOC=_________
(4)若∠BOC=140°,則∠A=________
(5)你能發(fā)現(xiàn)∠ BOC與∠ A之間有什么數(shù)量關(guān)系嗎?寫出并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】保護環(huán)境,讓我們從垃圾分類做起.某區(qū)環(huán)保部門為了提高宣傳實效,抽樣調(diào)查了部分居民小區(qū)一段時間內(nèi)生活垃圾的分類情況(如下圖),進行整理后,繪制了如下兩幅尚不完整的統(tǒng)計圖:
根據(jù)圖表解答下列問題:
(1)請將條形統(tǒng)計圖補充完整;
(2)在扇形統(tǒng)計圖中,求出“D”部分所對應(yīng)的圓心角等于 度;
(3)在抽樣數(shù)據(jù)中,產(chǎn)生的有害垃圾共有 噸;
(4)調(diào)查發(fā)現(xiàn),在可回收物中廢紙垃圾約占,若每回收1噸廢紙可再造紙0.85噸.假設(shè)該城市每月產(chǎn)生的生活垃圾為10000噸,且全部分類處理,那么每月回收的廢紙可再造紙多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明同學(xué)在將一張矩形紙片ABCD的四個角向內(nèi)折起時,發(fā)現(xiàn)恰好能拼成一個無縫隙無重疊的四邊形EFGH.于是他測量出EH=12cm,EF=16cm,根據(jù)這兩個數(shù)據(jù)他很快求出了邊AD的長,則邊AD的長是( )
A.12cm
B.16cm
C.20cm
D.28cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的三邊為邊分別作等邊△ACD、△ABE、△BCF
(1)求證:△EBF≌△DFC;
(2)求證:四邊形AEFD是平行四邊形;
(3)①△ABC滿足時,四邊形AEFD是菱形.(無需證明) ②△ABC滿足時,四邊形AEFD是矩形.(無需證明)
③△ABC滿足時,四邊形AEFD是正方形.(無需證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com