【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘米,乙在A地時距地面的高度b為米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式.
(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?

【答案】
(1)10;30
(2)解:當(dāng)0≤x≤2時,y=15x;

當(dāng)x≥2時,y=30+10×3(x﹣2)=30x﹣30.

當(dāng)y=30x﹣30=300時,x=11.

∴乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式為y=


(3)解:甲登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式為y=10x+100(0≤x≤20).

當(dāng)10x+100﹣(30x﹣30)=50時,解得:x=4;

當(dāng)30x﹣30﹣(10x+100)=50時,解得:x=9;

當(dāng)300﹣(10x+100)=50時,解得:x=15


【解析】解:(1)(300﹣100)÷20=10(米/分鐘), b=15÷1×2=30.
故答案為:10;30.
(1)根據(jù)速度=高度÷時間即可算出甲登山上升的速度;根據(jù)高度=速度×?xí)r間即可算出乙在A地時距地面的高度b的值;(2)分0≤x≤2和x≥2兩種情況,根據(jù)高度=初始高度+速度×?xí)r間即可得出y關(guān)于x的函數(shù)關(guān)系;(3)找出甲登山全程中y關(guān)于x的函數(shù)關(guān)系式,令二者做差等于50即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,點D、E分別在AB、AC上,且CD于BE相交于點F,已知△BDF的面積為12,△BCF的面積為16,△CEF的面積為12,則四邊形ADFE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面幾何中,我們學(xué)過兩條直線平行的定義,下面就兩個一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)y=k1x+b1k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2k2≠0)的圖象為直線l2,若k1=k2,且b1b2,我們就稱直線l1與直線l2互相平行.解答下面的問題:

(1)求過點P(1,2),且與已知直線y=-2x-1平行的直線l的函數(shù)解析式,并畫出圖象;

(2)設(shè)直線l分別與y軸,x軸交于點A、B,如果直線my=kx+tt>0)與直線l平行,且交x軸于點C,求出△ABC的面積S,關(guān)于t函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,DAB上的點,過點DBC于點F,交AC的延長線于點E,連接CD,,則下列結(jié)論正確的有( )

DCB=B;②CD=AB;③ADC是等邊三角形;④若E=30°,則DE=EF+CF

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生在校吃午餐所需時間的情況,抽查了20名同學(xué)在校吃午餐所花的時間,獲得如下數(shù)據(jù)(單位:min):

10,12,15,10,16,18,19,18,20,38,

22,25,20,18,18,20,15,16,21,16.

(1)若將這些數(shù)據(jù)分為6組,請列出頻數(shù)表,畫出頻數(shù)直方圖;

(2)根據(jù)頻數(shù)直方圖,你認(rèn)為校方安排學(xué)生吃午餐時間多長為宜?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形AOBC在直角坐標(biāo)系中,點Ay軸上,點Bx軸上,已知點C的坐標(biāo)是(8,4).

(1)對角線AB的垂直平分線MNx軸于點M,連接AM,求線段AM的長;

(2)在x軸上是否存在一個點P,使PAM為等腰三角形?如果有請直接寫出符合題意的所有點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直線1上依次擺放著四個正方形和三個等腰直角三角形(陰影圖形),已知三個等腰直角三角形的面積從左到右分別為1、2、3,四個正方形的面積從左到右依次是S1、S2、S3S4,則S1+S2+S3+S4的值為( 。

A. 4 B. 5 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠為了解工人在單位時間內(nèi)加工同一種零件的技能水平,隨機(jī)抽取了50名工人加工的零件進(jìn)行檢測,統(tǒng)計出他們各自加工的合格品數(shù)是1到8這八個整數(shù),現(xiàn)提供統(tǒng)計圖的部分信息如圖.

請解答下列問題:
(1)根據(jù)統(tǒng)計圖,寫出這50名工人加工出的合格品數(shù)的中位數(shù).
(2)寫出這50名工人加工出合格品數(shù)的眾數(shù)的可能取值.
(3)廠方認(rèn)定,工人在單位時間內(nèi)加工出的合格品數(shù)不低于2件為技能合格,否則,將接受技能再培訓(xùn),已知該廠有同類工人400名,請估計該廠將接受技能再培訓(xùn)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,ABC的外角∠ABD的平分線與∠ACB的平分線交于點OMN過點O,且MNBC,分別交AB、AC于點M、N

求證:(1)MO=MB;(2)MN=CNBM

查看答案和解析>>

同步練習(xí)冊答案