圖1是邊長分別為a和b(a>b)的兩個等邊三角形紙片ABC和C′DE疊放在一起(C與C′重合)的圖形.
操作與思考:
操作:若將圖1中的△C′DE繞點C按順時針方向任意旋轉一個角度α,連接AD、BE,如圖2或如圖3;
思考:在圖2和圖3中,線段BE與AD之間的大小關系是________;
猜想與發(fā)現(xiàn):
根據(jù)上面的操作和思考過程,請你猜想當α為________度時,線段AD的長度最大,當α為某個角度時,線段AD的長度最小,最小是________.

相等    180    a-b
分析:根據(jù)等邊三角形性質得出BC=AC,CE=CD,∠BCA=∠ECD=60°,求出∠BCE=∠ACD,根據(jù)SAS證△BCE≌△ACD,推出BE=AD即可;根據(jù)題意得出當D在AC延長線時,AD有最大值,當D在線段AC上時,AD有最小值.
解答:在圖2和圖3中,線段BE與AD之間的大小關系是相等,理由如下:
∵△ABC和△CED是等邊三角形,
∴BC=AC,CE=CD,∠BCA=∠ECD=60°,
∴∠BCA-∠ECA=∠ECD-∠ECA,
即∠BCE=∠ACD,
在△BCE和△ACD中

∴△BCE≌△ACD(SAS),
∴BE=AD,
當α等于180°時,D在AC的延長線上,線段AD的長度最大,最大值是AC+CD=a+b,根據(jù)圖1可知:當α為0°時,線段AD的長度最小,最小是AC-CD=a-b,
故答案為:相等,180,a-b.
點評:本題考查了三角形內角和定理,等邊三角形的性質,全等三角形的性質和判定,注意:全等三角形的對應邊相等,對應角相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

圖1是邊長分別為4
3
和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試證明你的結論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖3);
探究:設△PQR移動的時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點C落在C′E′的中點,邊BC交D′E′于點M,邊AC交D′C′于點N,設∠AC C′=α(30°<α<90°(圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

圖1是邊長分別為4
3
和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉30°得到△CDE,連接AD,BE,CE的延長線交AB于F(圖2).
探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試證明你的結論;
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖3).
探究:設△PQR移動的時間為x秒,△PQR與△AFC重疊部分的面積為y精英家教網,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

圖1是邊長分別為4
3
和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試證明你的結論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖3);
請問:經過多少時間,△PQR與△ABC重疊部分的面積恰好等于
7
3
4

(3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點C落在C′E′的中點,邊BC交D′E′于點M,邊AC交D′C′于點N,設
∠AC C′=α(30°<α<90,圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•攀枝花)圖1是邊長分別為a和b(a>b)的兩個等邊三角形紙片ABC和C′DE疊放在一起(C與C′重合)的圖形.
操作與思考:
操作:若將圖1中的△C′DE繞點C按順時針方向任意旋轉一個角度α,連接AD、BE,如圖2或如圖3;
思考:在圖2和圖3中,線段BE與AD之間的大小關系是
相等
相等

猜想與發(fā)現(xiàn):
根據(jù)上面的操作和思考過程,請你猜想當α為
180
180
度時,線段AD的長度最大,當α為某個角度時,線段AD的長度最小,最小是
a-b
a-b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1是邊長分別為4
3
和3的兩個等邊三角形紙片ABC和CDE疊放在一起.
(1)固定△ABC,將△CDE繞點C順時針旋轉30°得到△CDE,連接AD、BE、CE的延長線交AB于點F(圖2),線段BE與AD之間有怎樣的大小關系?證明你的結論;
(2)固定△CDE,將△ABC移動,使頂點C落在CE的中點G,邊BG交DE于點M,邊AG交DC于點N,求證:CN•EM=EG•CG;
(3)將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖4);探究:設△PQR移動時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案