【題目】如圖,AOB=90°,反比例函數(shù)y=﹣(x<0)的圖象過點A(﹣1,a),反比例函數(shù)y=(k>0,x>0)的圖象過點B,且ABx軸.

(1)求a和k的值;

(2)過點B作MNOA,交x軸于點M,交y軸于點N,交雙曲線y=于另一點C,求OBC的面積.

【答案】(1)a=2,k=8(2) =15.

【解析】分析:(1)把A(-1,a)代入反比例函數(shù)得到A(-1,2),過AAEx軸于EBFx軸于F,根據(jù)相似三角形的性質(zhì)得到B(4,2),于是得到k=4×2=8;
(2)求的直線AO的解析式為y=-2x,設直線MN的解析式為y=-2x+b,得到直線MN的解析式為y=-2x+10,解方程組得到C(1,8),于是得到結論.

詳解:(1)反比例函數(shù)y=﹣(x<0)的圖象過點A(﹣1,a),

∴a=﹣=2,

∴A(﹣1,2),

過A作AEx軸于E,BF⊥⊥x軸于F,

∴AE=2,OE=1,

∵AB∥x軸,

∴BF=2,

∵∠AOB=90°,

∴∠EAO+∠AOE=∠AOE+∠BOF=90°,

∴∠EAO=∠BOF,

∴△AEO∽△OFB,

,

∴OF=4,

∴B(4,2),

∴k=4×2=8;

(2)∵直線OA過A(﹣1,2),

直線AO的解析式為y=﹣2x,

∵MN∥OA,

設直線MN的解析式為y=﹣2x+b,

∴2=﹣2×4+b,

∴b=10,

直線MN的解析式為y=﹣2x+10,

直線MN交x軸于點M,交y軸于點N,

∴M(5,0),N(0,10),

得,,

∴C(1,8),

∴△OBC的面積=S△OMN﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=15.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】學生在素質(zhì)教育基地進行社會實踐活動,幫助農(nóng)民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:黃瓜的種植成本是1/kg,售價為1.5/kg;茄子的種植成本是1.2/kg,售價是2/kg

(1)請問采摘的黃瓜和茄子各多少千克?

(2)這些采摘的黃瓜和茄子可賺多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD為正方形,點E為線段AC上一點,連接DE,過點EEF⊥DE,交射線BC于點F,以DE、EF為鄰邊作矩形DEFG,連接CG.

(1)如圖1,求證:矩形DEFG是正方形;

(2)若AB=2,CE=,求CG的長度;

(3)當線段DE與正方形ABCD的某條邊的夾角是30°時,直接寫出∠EFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊直角三角形紙片,兩直角邊AB6,BC8,將△ABC折疊,使AB落在斜邊AC上,折痕為AD,則BD的長為( )

A. 6B. 5C. 4D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,點F是邊BC上不與點B、C重合的一個動點,把△EBF沿EF折疊,點B落在B′處,若△CDB′恰為等腰三角形,則DB′的長為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=32°,將△ABC沿直線m翻折,點B落在點D的位置,則∠1-2的度數(shù)是(

A. 32° B. 64° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校園安全受到全社會的廣泛關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學生共有   人,扇形統(tǒng)計圖中了解部分所對應扇形的圓心角為   °;

(2)若該中學共有學生900人,請根據(jù)上述調(diào)查結果,估計該中學學生中對校園安全知識達到了解基本了解程度的總?cè)藬?shù)為  人;

(3)若從對校園安全知識達到了解程度的3個女生A、B、C2個男生M、N中分別隨機抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ΔP1OA1,ΔP2A1A2是等腰直角三角形,點P1、P2在函數(shù)y=(x>0)的圖象上,斜邊OA1、A1A2都在x軸上,則點A2的坐標是____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC在直角坐標系內(nèi)的位置如圖所示.

(1)分別寫出A、B、C的坐標;

(2)請在這個坐標系內(nèi)畫出A1B1C1,使A1B1C1ABC關于y軸對稱,并寫出B1的坐標;

(3)請在這個坐標系內(nèi)畫出A2B2C2,使A2B2C2ABC關于原點對稱,并寫出A2的坐標.

查看答案和解析>>

同步練習冊答案