是邊長為的等邊三角形。點D在三角形內(nèi),到邊AB的距離是1,到A點的距離是2,點E和點D關(guān)于邊AB對稱,點F和點E關(guān)于邊AC對稱,則點F到BC的距離是      

畫出圖形,由對稱的性質(zhì)和等邊

三角形的性質(zhì)可設(shè)F到BC的距離為4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△OAB是邊長為數(shù)學(xué)公式的等邊三角形,其中O是坐標(biāo)原點,頂點B在y軸的正方向上,將△OAB折疊,使點A落在OB邊上,記為A′,折痕為EF.
(1)當(dāng)A′E∥x軸時,求點A'的坐標(biāo)和直線A′F所對應(yīng)的函數(shù)關(guān)系式;
(2)在OB上是否存在點A′,使四邊形AFA′E是菱形?若存在,請求出此時點A′的坐標(biāo);若不存在,請說明理由;
(3)當(dāng)點A′在OB上運動但不與點O、B重合,能否使△A′EF成為直角三角形?若能,請求出此時點A′的坐標(biāo);若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆北京豐臺區(qū)中考模擬數(shù)學(xué)卷 題型:解答題

如圖9所示,是邊長為的等邊三角形,其中是坐標(biāo)原點,頂點軸的正方向上,將折疊,使點落在邊上,記為,折痕為。
【小題1】設(shè)的長為,的周長為,求關(guān)于的函數(shù)關(guān)系式.
【小題2】當(dāng)//y軸時,求點和點的坐標(biāo).
【小題3】當(dāng)上運動但不與、重合時,能否使成為直角三角形?若能,請求出點的坐標(biāo);若不能,請說明理由.
\

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年初中畢業(yè)升學(xué)考試(江蘇南京卷)數(shù)學(xué)(帶解析) 題型:解答題

在平面內(nèi),先將一個多邊形以點為位似中心放大或縮小,使所得多邊形與原多邊形對應(yīng)線段的比為,并且原多邊形上的任一點,它的對應(yīng)點在線段或其延長線上;接著將所得多邊形以點為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)一個角度,這種經(jīng)過和旋轉(zhuǎn)的圖形變換叫做旋轉(zhuǎn)相似變換,記為,其中點叫做旋轉(zhuǎn)相似中心,叫做相似比,叫做旋轉(zhuǎn)角.
(1)填空:
①如圖1,將以點為旋轉(zhuǎn)相似中心,放大為原來的2倍,再逆時針旋轉(zhuǎn),得到,這個旋轉(zhuǎn)相似變換記為           ,             );
②如圖2,是邊長為的等邊三角形,將它作旋轉(zhuǎn)相似變換,得到,則線段的長為           
(2)如圖3,分別以銳角三角形的三邊,為邊向外作正方形,,,點,分別是這三個正方形的對角線交點,試分別利用,之間的關(guān)系,運用旋轉(zhuǎn)相似變換的知識說明線段之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年初中畢業(yè)升學(xué)考試(江蘇南京卷)數(shù)學(xué)(解析版) 題型:解答題

在平面內(nèi),先將一個多邊形以點為位似中心放大或縮小,使所得多邊形與原多邊形對應(yīng)線段的比為,并且原多邊形上的任一點,它的對應(yīng)點在線段或其延長線上;接著將所得多邊形以點為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)一個角度,這種經(jīng)過和旋轉(zhuǎn)的圖形變換叫做旋轉(zhuǎn)相似變換,記為,其中點叫做旋轉(zhuǎn)相似中心,叫做相似比,叫做旋轉(zhuǎn)角.

(1)填空:

    ①如圖1,將以點為旋轉(zhuǎn)相似中心,放大為原來的2倍,再逆時針旋轉(zhuǎn),得到,這個旋轉(zhuǎn)相似變換記為                          );

②如圖2,是邊長為的等邊三角形,將它作旋轉(zhuǎn)相似變換,得到,則線段的長為             ;

(2)如圖3,分別以銳角三角形的三邊,為邊向外作正方形,,,點,,分別是這三個正方形的對角線交點,試分別利用之間的關(guān)系,運用旋轉(zhuǎn)相似變換的知識說明線段之間的關(guān)系.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年北京豐臺區(qū)中考模擬數(shù)學(xué)卷 題型:解答題

如圖9所示,是邊長為的等邊三角形,其中是坐標(biāo)原點,頂點軸的正方向上,將折疊,使點落在邊上,記為,折痕為。

1.設(shè)的長為,的周長為,求關(guān)于的函數(shù)關(guān)系式.

2.當(dāng)//y軸時,求點和點的坐標(biāo).

3.當(dāng)上運動但不與、重合時,能否使成為直角三角形?若能,請求出點的坐標(biāo);若不能,請說明理由.

\

 

查看答案和解析>>

同步練習(xí)冊答案