【題目】四座城市A,B,C,D分別位于一個邊長100km的大正方形的四個頂點(diǎn),由于各城市之間的商業(yè)往來日益頻繁,于是政府決定修建公路網(wǎng)連接它們,根據(jù)實際,公路總長設(shè)計得越短越好,公開招標(biāo)的信息發(fā)布后,一個又一個方案被提交上來,經(jīng)過初審后,擬從下面四個方案中選定一個再進(jìn)一步認(rèn)證,其中符合要求的方案是( )

A. B. C. D.

【答案】D

【解析】如圖所示:

因為正方形的邊長為100km,
則方案A需用線200 km,
方案B需用線(200+100)km,方案C需用線300km,
方案D如圖所示:

∵AD=100km,
∴AG=50km,AE

EF=100-2GE=100- ,

∴方案D需用線

所以方案D最省錢.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線AB的函數(shù)解析式為y=-2x+8,與x軸交于點(diǎn)A,與y軸交于點(diǎn)B

1)求AB兩點(diǎn)的坐標(biāo);

2)若點(diǎn)P(m,n)為線段AB上的一個動點(diǎn)(A、B不重合),作PEx軸于點(diǎn)E,PFy軸于點(diǎn)F,連接EF,若△PEF的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫出m的取值范圍;

3)以上(2)中的函數(shù)圖象是一條直線嗎?請嘗試作圖驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,在平面內(nèi),如果一個圖形繞著一個定點(diǎn)旋轉(zhuǎn)一定的角度后能與自身重合,那么就稱這個圖形是旋轉(zhuǎn)對稱圖形,轉(zhuǎn)的這個角稱為這個圖形的一個旋轉(zhuǎn)角.例如,正方形繞著它的對角線的交點(diǎn)旋轉(zhuǎn)后能與自身重合所以正方形是旋轉(zhuǎn)對稱圖形,它有一個旋轉(zhuǎn)角為

判斷下列說法是否正確(在相應(yīng)橫線里填上“對”或“錯”)

①正五邊形是旋轉(zhuǎn)對稱圖形,它有一個旋轉(zhuǎn)角為.________

②長方形是旋轉(zhuǎn)對稱圖形,它有一個旋轉(zhuǎn)角為.________

填空:下列圖形中時旋轉(zhuǎn)對稱圖形,且有一個旋轉(zhuǎn)角為的是________.(寫出所有正確結(jié)論的序號)

①正三角形②正方形③正六邊形④正八邊形

寫出兩個多邊形,它們都是旋轉(zhuǎn)對稱圖形,都有一個旋轉(zhuǎn)角為,其中一個是軸對稱圖形,但不是中心對稱圖形;另一個既是軸對稱圖形,又是中心對稱圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC 中,∠BAC=θ.邊 AB 的垂直平分線交邊 BC 于點(diǎn) D,邊 AC的垂直平分線交邊BC于點(diǎn) E,連結(jié) AD,AE,則∠DAE 的度數(shù)為_____.(用含θ 的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中, ADBC,EF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E,且AE=AB

1)若∠BAE40°,求∠C的度數(shù);

2)若ABC周長26cm,AC10cm,求DC長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為6cm,B⊙O外一點(diǎn),OB⊙O于點(diǎn)A,AB=OA,動點(diǎn)P從點(diǎn)A出發(fā),以π cm/s的速度在⊙O上按逆時針方向運(yùn)動一周回到點(diǎn)A立即停止.當(dāng)點(diǎn)P運(yùn)動的時間為______時,BP⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:小明同學(xué)進(jìn)入初二以后,讀書越發(fā)認(rèn)真.

在學(xué)習(xí)用因式分解法解方程時,課后習(xí)題中有這樣一個問題:

下列方程的解法對不對?為什么?

解:

解得

所以,

同學(xué)們都認(rèn)為不對,原因:有的說該題的因式分解是錯誤的;有的說將答案代入方程,方程左右兩邊不成立,等等.

小明同學(xué)除了認(rèn)為該解法不正確,還給出了一種因式分解的做法,小明同學(xué)的做法如下:

的平均值,即將相加再除以2

那么原方程可化為

左邊用平方差公式可化為

再移項,開平方可得

請你認(rèn)真閱讀小明同學(xué)的方法,并用這個方法推導(dǎo):

關(guān)于的方程的求根公式(此時).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,∠ABC=72°,AFBC于點(diǎn)F,AFBD于點(diǎn)E,DE=2AB, 則∠AED=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關(guān)系,其部分圖象如圖所示.

(1)求y關(guān)于x的函數(shù)關(guān)系式;(不需要寫定義域)

(2)已知當(dāng)油箱中的剩余油量為8升時,該汽車會開始提示加油,在此次行駛過程中,行駛了500千米時,司機(jī)發(fā)現(xiàn)離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時離加油站的路程是多少千米?

查看答案和解析>>

同步練習(xí)冊答案