【題目】如圖,在四邊形ABCD的邊AB上任取一點點P不與A,B重合,分別連接PD,PC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把P叫四邊形ABCD的邊AB上的“相似點”;如果這三個三角形都相似,我們就把P叫做四邊形ABCD的邊AB上的“強相似點“.
解決問題
如圖,,試判斷點P是否是四邊形ABCD的邊AB上的相似點,并說明理由.
如圖,在四邊形ABCD中,A,B,C,D四點均在正方形網(wǎng)格網(wǎng)格中每個小正方形的邊長為的格點即每個小正方形的頂點上,試在圖中畫出四邊形ABCD的邊BC上的相似點,并寫出對應(yīng)的相似三角形;
如圖,在四邊形ABCD中,,,,點P在邊BC上,若點P是四邊形ABCD的邊BC上的一個強相似點,求BP的長.
【答案】結(jié)論:點P是四邊形ABCD的邊AB上的相似點,理由見解析;(2)畫出四邊形ABCD的邊BC上的相似點,見解析;∽,∽;.
【解析】
結(jié)論:點P是四邊形ABCD的邊AB上的相似點,根據(jù)相似點的定義判斷即可.
分兩種情形分別求解即可.
取AD的中點O,作,垂足為則點P為所求,連接AP,證明點P是強相似點,求出AE即可解決問題.
:結(jié)論:點P是四邊形ABCD的邊AB上的相似點,
理由:如圖中,
,
.
.
,
,
,
∽,
點P是四邊形ABCD的邊AB上的相似點.
如圖中,作,交邊BC于點,則點為所求,此時∽:
作點A關(guān)于直線BC的對稱點A’:連接DA’,交BC于點,
則點為所求,此時∽,
取AD的中點O,作,垂足為則點P為所求,連接AP,DP.
,,
,
作,則四邊形ABCE,ABPF,FPCE均為矩形,
,,
是的中位線,
,
.
,,
,
,
.
同理可證:,
,
∽∽,
點P是四邊形ABCD的邊BC上的一個強相似點,
在中,.
,
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王叔叔家是養(yǎng)豬專業(yè)戶,他們養(yǎng)的藏香豬和土黑豬一直很受市民歡迎.小王今年10月份開店賣豬肉,已知藏香豬肉售價每斤元,土黑豬肉售價每斤元,每天固定從叔叔家進貨兩種豬肉共斤并且能全部售完.
(1)若每天銷售總額不低于元,則每天至少銷售藏香豬肉多少斤?
(2)小王發(fā)現(xiàn)10月份每天上午就能將豬肉全部售完,而且消費者對豬肉的評價很高.于是小王決定調(diào)整豬肉價格,并增加進貨量,且能將豬肉全部銷售完.他將藏香豬肉的價格上漲,土黑豬肉的價格下調(diào),銷量與(1)中每天獲得最低銷售總額時的銷量相比,藏香豬肉銷量下降了,土黑豬肉銷量是原來的倍,結(jié)果每天的銷售總額比(1)中每天獲得的最低銷售總額還多了元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax+bx+c(a,b,c為常數(shù))中的x與y的部分對應(yīng)值如表所示:
x | -1 | 0 | 1 | 3 |
y |
| 3 | 3 |
下列結(jié)論:
(1)abc<0
(2)當(dāng)x>1時,y的值隨x值的增大而減小;
(3)16a+4b+c<0
(4)x=3是方程ax+(b-1)x+c=0的一個根;其中正確的個數(shù)為( )
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)報名參加學(xué)校運動會,有以下4個項目可供選擇:
徑賽項目:100m,200m,分別用、、表示;
田賽項目:立定跳遠用B表示.
小明從4個項目中任選一個,恰好是徑賽項目的概率為______;
小明從4個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個田賽項目和一個徑賽項目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與函數(shù)的圖象交于,兩點,軸于C,軸于D
求k的值;
根據(jù)圖象直接寫出的x的取值范圍;
是線段AB上的一點,連接PC,PD,若和面積相等,求點P坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=m,BC=8,E為線段BC上的動點(不與B,C重合),連接DE,作EF⊥DE,EF與射線BA交于點F,設(shè)CE=x,BF=y,若,當(dāng)DEF為等腰三角形時,m的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,D,E分別是AC,BC邊上的點,且AD=CE,連接BD,AE相交于點F。
(1)當(dāng)∠ABC=∠C=60°時,,那么;(直接寫出結(jié)論)
(2)當(dāng)△ABC為等邊三角形,時,請用含n的式子表示AF,BF的數(shù)量關(guān)系,并說明理由;
(3)如圖2,在△ABC中,∠ABC=45°,∠ACB=30°,AC=,點E在BC上,點D是AE的中點,當(dāng)∠EDC=30°時,CE和DE的數(shù)量關(guān)系為。(直接寫出結(jié)論,不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸分別交于A(1,0),B(5,0)兩點.
(1)求拋物線的解析式;
(2)過C(﹣3,0)向x軸下方作CD垂直x軸,連接AD,已知CD=4,將Rt△ACD沿x軸向右平移m個單位,當(dāng)點D落在拋物線上時,求m的值;
(3)在(2)的條件下,當(dāng)點D第一次落在拋物線上記為點E,點P是拋物線對稱軸上一點,試探究:在拋物線上是否存在點Q,使以點B、E、P、Q為頂點的四邊形是平行四邊形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com