如圖,點D在反比例函數(shù)y=
k
x
(k>0)上,點C在x軸的正半軸上且坐標為(4,O),△ODC是以CO為斜邊的等腰直角三角形.

(1)求點D的坐標;
(2)求反比例函數(shù)的解析式;
(3)點B為橫坐標為1的反比例函數(shù)圖象上的一點,BA、BE分別垂直x軸和y軸,垂足分別為點A和點E,連結(jié)OB,將四邊形OABE沿OB折疊,使A點落在點A′處,A′B與y軸交于點F.求直線BA′的解析式.
(1)過D作DG⊥x軸,交x軸于點G,
∵△ODC為等腰直角三角形,
∴G為OC的中點,即DG為斜邊上的中線,
∴DG=OG=
1
2
OC=2,
∴D(2,2),

(2)代入反比例解析式得:2=
k
2
,即k=4,
則反比例解析式為y=
4
x
;

(3)∵點B是y=
4
x
上一點,B的橫坐標為1,
∴y=
4
1
=4,
∴B(1,4),
由折疊可知:△BOA′≌△BOA,
∵OA=1,AB=4,
∴BE=A′O=1,OE=BA′=4,
又∵∠OAB=90°,∠A′FO=∠BFE,
∴∠BA′O=∠OEB=90°,
∴△OA′F≌△BFE(AAS),
∴A′F=EF,
∵OE=EF+OF=4,
∴A′F+OF=4,
在Rt△A′OF中,由勾股定理得OA′2+A′F2=OF2
設(shè)OF=x,則A′F=4-x,
∴12+(4-x)2=x2,
∴x=
17
8
,
∴OF=
17
8
,即F(0,
17
8
),
設(shè)直線BA′解析式為y=kx+b,
將B(1,4)與F(0,
17
8
)坐標代入,
得:
k+b=4
b=
17
8

解得:
k=
15
8
b=
17
8
,
則線BA′解析式為y=
15
8
x+
17
8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正比例函數(shù)y=
1
2
x
的圖象與反比例函數(shù)y=
k
x
(k≠0)
在第一象限的圖象交于A點,過A點作x軸的垂線,垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果B(a,b)為反比例函數(shù)在第一象限圖象上的點,且b=2a,試探究在x軸上是否存在點P,使△PAB周長最。咳舸嬖,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形AOCB的邊長為4,反比例函數(shù)的圖象過點E(3,4).
(1)求反比例函數(shù)的解析式;
(2)反比例函數(shù)的圖象與線段BC交于點D,直線y=-
1
2
x+b
過點D,與線段AB相交于點F,求點F的坐標;
(3)連接OF,OE,探究∠AOF與∠EOC的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知反比例函數(shù)y=
1
x
的圖象上有一點P,過點P分別作x軸和y軸的垂線,垂足分別為A、B,使四邊形OAPB為正方形.又在反比例函數(shù)的圖象上有一點P1,過點P1分別作BP和y軸的垂線,垂足分別為A1、B1,使四邊形BA1P1B1為正方形,求點P和點P1的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=
1
2
x+2分別交x、y軸于點A、C,P是該直線上在第一象限內(nèi)的一點,PB⊥x軸,B為垂足,S△ABP=9.求:
(1)求點A、C的坐標;
(2)求反比例函數(shù)解析式;
(3)設(shè)點R與點P在同一個反比例函數(shù)的圖象上,且點R在直線PB的右側(cè),作RT⊥x軸,T為垂足,當△BRT與△AOC相似時,求點R的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,A、M是反比例函數(shù)圖象上的兩點,過點M作直線MBx軸,交y軸于點B;過點A作直線ACy軸交x軸于點C,交直線MB于點D.BM:DM=8:9,當四邊形OADM的面積為
27
4
時,k=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二氧化碳的密度ρ(kg/m3)關(guān)于其體積V(m3)的函數(shù)關(guān)系式如圖所示,那么函數(shù)關(guān)系式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知矩形的面積為6cm2,它的xcm,寬為ycm,那么反映y與x之間函數(shù)關(guān)系的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=kx-2分別交x軸、y軸于點A、B,點P為AB上一點且PC為△AOB的中位線,PC的延長線交反比例函數(shù)y=
3
x
的圖象于點Q,若PQ=
5
2
,求k的值.

查看答案和解析>>

同步練習(xí)冊答案