【題目】圖形變換中的數(shù)學(xué),問題情境:在課堂上,興趣學(xué)習小組對一道數(shù)學(xué)問題進行了深入探究,在RtABC中,∠ACB90°,∠A30°,點DAB的中點,連接CD.探索發(fā)現(xiàn):

1)如圖①,BCBD的數(shù)量關(guān)系是

2)如圖①,CDAB的數(shù)量關(guān)系是 ;并說明理由.

猜想驗證:

3)如圖②,若P是線段CB上一動點(點P不與點B,C重合),連接DP,將線段DP繞點D逆時針旋轉(zhuǎn)60°,得到線段DF,連接BF,請猜想BF,BP,BD三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;

拓展延伸:

4)若點P是線段CB延長線上一動點,按照(3)中的作法,請在圖③中補全圖象,并直接寫出BFBPBD三者之間的數(shù)量關(guān)系.

【答案】1BC=BD;(2CD=AB;(3BF+BPBD,證明見解析;(4)補圖見解析,BFBD+BP

【解析】

1)根據(jù)30°直角三角形的性質(zhì)和中點的定義,即可得到答案;

2)根據(jù)30°直角三角形的性質(zhì)和中點的定義,證明△DBC是等邊三角形,即可得到答案;

3)同(2)的方法得出BC=BD進而得出△BCD是等邊三角形,進而判斷出△DCP≌DBF,得出CP=BF即可得出結(jié)論;

4)同(3)的方法得出BC=BD進而得出△BCD是等邊三角形,進而判斷出△DCP≌△DBF,得出CP=BF即可得出結(jié)論;

解:(1)∵在Rt△ABC中,∠ACB90°,∠A30°,

,

∵點DAB的中點,

,

BC=BD

故答案為:BC=BD;

2CD=AB;

理由:∵∠ACB90°,∠A30°

∴∠CBA60°,BCAB,

∵點DAB的中點,

BCBD,

∴△DBC是等邊三角形,

CD=BC,

BCAB,

CD=AB;

故答案為:CDAB;

3BF+BPBD

理由:由(2)知 DBC是等邊三角形,

∴∠CDB60°DCDB,

∵線段DP繞點D逆時針旋轉(zhuǎn)60°,得到線段DF,

∴∠PDF60°,DPDF

∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,

∴∠CDP=∠BDF

∴△DCP≌△DBF,

CPBF

CP+BPBC,

BF+BPBC

BCBD,

BF+BPBD

4)如圖③,BF=BD+BP

理由:∵∠ACB=90°,∠A=30°,

∴∠CBA=60°BC=AB,

∵點DAB的中點,

BC=BD,

∴△DBC是等邊三角形,

∴∠CDB=60°,DC=DB,

∵線段DP繞點D逆時針旋轉(zhuǎn)60°,得到線段DF,

∴∠PDF=60°,DP=DF

∴∠CDB+PDB=PDF+PDB,

∴∠CDP=BDF

在△DCP和△DBF中,

,

∴△DCP≌△DBF

CP=BF,

CP=BC+BP,

BF=BC+BP,

BC=BD,

BF=BD+BP

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:(1)如圖,已知中,,直線經(jīng)過點直線,直線,垂足分別為點.求證:

證明:

拓展延伸:(2)如圖,將(1)中的條件改為:在中,三點都在直線上,并且有.請寫出三條線段的數(shù)量關(guān)系.(不需要證明)

實際應(yīng)用:(3)如圖,在中,,點的坐標為,點的坐標為,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將進貨價為30元的臺燈以40元的價格售出,平均每月能售出600個,經(jīng)調(diào)查表明,這種臺燈的售價每上漲1元,其銷量就減少10個,市場規(guī)定此臺燈售價不得超過60元,為了實現(xiàn)銷售這種臺燈平均每月10000元的銷售利潤,售價應(yīng)定為多少元?這時售出臺燈多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=60°,過點C作CD∥AB,若∠ACD=60°,求證:△ABC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,健民體育活動中心從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.

1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?

2)根據(jù)健民體育活動中心消費者的需求量,活動中心決定用不超過2550元錢購進甲、乙兩種羽毛球共50筒,那么最多可以購進多少筒甲種羽毛球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,頂點坐標為(﹣2,﹣9a),下列結(jié)論:①4a+2b+c>0;5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有兩個根x1x2,且x1<x2,則﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四個根,則這四個根的和為﹣4.其中正確的結(jié)論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】盤錦市雙臺子區(qū)為了了解2016年初中畢業(yè)生畢業(yè)后的去向,對部分初三學(xué)生進行了抽樣調(diào)查,就初三學(xué)生的四種去向:A.讀普通高中;B.讀職業(yè)高中C.直接進入社會就業(yè);D.其它;進行數(shù)據(jù)統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖(a)、(b).請問:

(1)該縣共調(diào)查了______名初中畢業(yè)生;

(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;

(3)若雙臺子區(qū)2016年初三畢業(yè)生共有4500人,請估計雙臺子區(qū)今年的初三畢業(yè)生中讀普通高中的學(xué)生人數(shù).

(4)老師想從甲、乙、丙、丁4位同學(xué)中隨機選擇兩位同學(xué)了解他們畢業(yè)后的去向情況,請用樹狀圖或列表法求選中甲同學(xué)的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)學(xué)習中,及時對知識進行歸納和整理是改善學(xué)習的重要方法善于學(xué)習的小明在學(xué)習了一次方程(組)、一元一次不等式和一次函數(shù)后,對相關(guān)知識進行了歸納整理.

1)例如他在同一個平面直角坐標系中畫出了一次函數(shù)的圖像如圖(a)所示,并做了歸納:

(Ⅰ)一次函數(shù)與方程的關(guān)系:

(。┮淮魏瘮(shù)的解析式就是一個二元一次方程.

(ⅱ)點B的橫坐標是方程①的解.

(ⅲ)點C的坐標中的x,y的值是方程組②的解.

(Ⅱ)一次函數(shù)與不等式的關(guān)系:

(ⅰ)函數(shù)的函數(shù)值y大于0時,自變量x的取值范圍就是不等式③的解集.

(ⅱ)函數(shù)的函數(shù)值小于0時,自變量x的取值范圍就是不等式④的解集.

請根據(jù)圖(1)和以上方框中的內(nèi)容,在下面數(shù)字序號后寫出相應(yīng)的結(jié)論:①________;②________;③________;④________;

2)若已知一次函數(shù)的圖像,如圖(2)所示,且它們的交點C的坐標為,那么不等式的解集是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級甲、乙兩名同學(xué)期末考試的成績(單位:分)如下:

語文

數(shù)學(xué)

英語

歷史

理化

體育

75

93

85

84

95

90

85

85

91

85

89

85

根據(jù)表格中的數(shù)據(jù),回答下列問題:

(1)甲的總分為522分,則甲的平均成績是__________分,乙的總分為520分,________的成績好一些. (或者”)

(2)經(jīng)過計算知. 你認為__________不偏科;(或者”)

(3)中招錄取時,歷史和體育科目的權(quán)重是0.3,其它科成績權(quán)重是1,請問誰的成績更好一些?請說明理由.

查看答案和解析>>

同步練習冊答案