【題目】已知:如圖,在ABC中,BDAC于點(diǎn)D,EBC上一點(diǎn),過(guò)E點(diǎn)作EFAC,垂足為F,過(guò)點(diǎn)DDHBCAB于點(diǎn)H.

(1)請(qǐng)你補(bǔ)全圖形。

(2)求證:BDH=CEF.

【答案】1)畫(huà)圖見(jiàn)解析;

2)證明見(jiàn)解析.

【解析】(1)根據(jù)題意,完成幾何圖形;(2)根據(jù)垂直的定義和平行四邊形的判定得到BD∥EF,則∠CEF=∠CBD,再由DE∥BC得到∠BDH=∠CBD,于是有∠BDH=∠CEF.

(1)如圖,

(2)證明:∵BDAC,EFAC,

∴∠CFE=CDB=90o

BDEF

∴∠CEF=CBD,

DHBC,

∴∠BDH=CBD,

∴∠BDH=CEF

“點(diǎn)睛”本題考查了平行線的判定與性質(zhì):平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系.平行線的性質(zhì)是由平行線關(guān)系來(lái)尋找角的數(shù)量關(guān)系,也考查了垂線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B兩點(diǎn)同時(shí)從原點(diǎn)O出發(fā),點(diǎn)A以每秒x個(gè)單位長(zhǎng)度沿x軸的負(fù)方向運(yùn)動(dòng),點(diǎn)B以每秒y個(gè)單位長(zhǎng)度沿y軸的正方向運(yùn)動(dòng).

(1)若|x+2y﹣5|+|2x﹣y|=0,試分別求出1秒鐘后A、B兩點(diǎn)的坐標(biāo);

(2)設(shè)∠BAO的外角和∠ABO的外角的平分線相交于點(diǎn)P,問(wèn):點(diǎn)A、B在運(yùn)動(dòng)的過(guò)程中,∠P的大小是否會(huì)發(fā)生變化?若不發(fā)生變化,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說(shuō)明理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為打造書(shū)香校園,計(jì)劃購(gòu)進(jìn)甲、乙兩種規(guī)格的書(shū)柜放置新購(gòu)進(jìn)的圖書(shū),調(diào)查發(fā)現(xiàn),若購(gòu)買(mǎi)甲種書(shū)柜3個(gè)、乙種書(shū)柜2個(gè),共需資金1020元;若購(gòu)買(mǎi)甲種書(shū)柜4個(gè),乙種書(shū)柜3個(gè),共需資金1440元.

(1)甲、乙兩種書(shū)柜每個(gè)的價(jià)格分別是多少元?

(2)若該校計(jì)劃購(gòu)進(jìn)這兩種規(guī)格的書(shū)柜共20個(gè),其中乙種書(shū)柜的數(shù)量不少于甲種書(shū)柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請(qǐng)?jiān)O(shè)計(jì)出所有購(gòu)買(mǎi)方案供這個(gè)學(xué)校選擇.

(3)試說(shuō)明在(2)中哪種方案費(fèi)用最低?最低費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在下面平面直角坐標(biāo)系中,已知A ,B ,C 三點(diǎn).其中滿足.

(1)的值;

(2)如果在第二象限內(nèi)有一點(diǎn) ,請(qǐng)用含的式子表示四邊形的面積;

(3)在(2)的條件下,是否存在點(diǎn),使四邊形的面積為△的面積的兩倍?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,H是△ABC的高AD,BE的交點(diǎn),且DH=DC,則下列結(jié)論:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定兩數(shù)a,b之間的一種運(yùn)算,記作(ab):如果,那么(a,b)=c

例如:因?yàn)?3=8,所以(2,8)=3.

(1)根據(jù)上述規(guī)定,填空:

(3,27)=_______,(5,1)=_______,(2, )=_______.

(2)小明在研究這種運(yùn)算時(shí)發(fā)現(xiàn)一個(gè)現(xiàn)象:(3n,4n)=(3,4)小明給出了如下的證明:

設(shè)(3n,4n)=x,則(3nx=4n,即(3xn=4n

所以3x=4,即(3,4)=x

所以(3n,4n)=(3,4).

請(qǐng)你嘗試運(yùn)用上述這種方法說(shuō)明下面這個(gè)等式成立的理由:(4,5)+(4,6)=(4,30)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為保護(hù)環(huán)境,我市公交公司計(jì)劃購(gòu)買(mǎi)A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購(gòu)買(mǎi)A型公交車1輛,B型公交車2輛,共需400萬(wàn)元;若購(gòu)買(mǎi)A型公交車2輛,B型公交車1輛,共需350萬(wàn)元.

(1)求購(gòu)買(mǎi)A型和B型公交車每輛各需多少萬(wàn)元?

(2)預(yù)計(jì)在某線路上A型和B型公交車每輛年均載客量分別為60萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買(mǎi)A型和B型公交車的總費(fèi)用不超過(guò)1200萬(wàn)元,且確保這10輛公交車在該線路的年均載客總和不少于680萬(wàn)人次,則該公司有哪幾種購(gòu)車方案?

(3)在(2)的條件下,哪種購(gòu)車方案總費(fèi)用最少?最少總費(fèi)用是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC,AD平分∠BAC交BC于點(diǎn)D,BC的中點(diǎn)為M,ME∥AD,交BA的延長(zhǎng)線于點(diǎn)E,交AC于點(diǎn)F.

(1)求證:AE=AF;

(2)求證:BE=(AB+AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,∠C=90°,tanA= ,D是AC上一點(diǎn),∠CBD=∠A,則sin∠ABD=(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案