【題目】為了推動(dòng)課堂教學(xué)改革,打造高效課堂,配合我市“兩型課堂”的課題研究,蓮城中學(xué)對(duì)八年級(jí)部分學(xué)生就一期來“分組合作學(xué)習(xí)”方式的支持程度進(jìn)行調(diào)查,統(tǒng)計(jì)情況如圖.試根據(jù)圖中提供的信息,
回答下列問題:
(1)求本次被調(diào)查的八年級(jí)學(xué)生的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該校八年級(jí)學(xué)生共有180人,請(qǐng)你估計(jì)該校八年級(jí)有多少名學(xué)生支持“分組合作學(xué)習(xí)”方式(含“非常喜歡”和“喜歡”兩種情況的學(xué)生).
【答案】(1)54人,畫圖見解析;(2)160名.
【解析】
(1)根據(jù)喜歡“分組合作學(xué)習(xí)”方式的圓心角度數(shù)和頻數(shù)可求總數(shù),從而得出非常喜歡“分組合作學(xué)習(xí)”方式的人數(shù),補(bǔ)全條形圖.
(2)利用扇形圖得出支持“分組合作學(xué)習(xí)”方式所占的百分比,利用樣本估計(jì)總體即可.
解:(1)∵喜歡“分組合作學(xué)習(xí)”方式的圓心角度數(shù)為120°,頻數(shù)為18,
∴本次被調(diào)查的八年級(jí)學(xué)生的人數(shù)為:18÷=54(人).
∴非常喜歡“分組合作學(xué)習(xí)”方式的人數(shù)為:54﹣18﹣6=30(人),如圖補(bǔ)全條形圖:
(2)∵“非常喜歡”和“喜歡”兩種情況在扇形統(tǒng)計(jì)圖中所占圓心角為:120°+200°=320°,
∴支持“分組合作學(xué)習(xí)”方式所占百分比為:×100%,
∴該校八年級(jí)學(xué)生共180人中,估計(jì)有180×=160名支持“分組合作學(xué)習(xí)”方式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為8的正方形OABC的兩邊在坐標(biāo)軸上,以點(diǎn)C為頂點(diǎn)的拋物線經(jīng)過點(diǎn)A,點(diǎn)P是拋物線上點(diǎn)A,C間的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)),過點(diǎn)P作PF⊥BC于點(diǎn)F,點(diǎn)D,E的坐標(biāo)分別為(0,6),(﹣4,0),連接PD,PE,DE.
(1)求拋物線的解析式;
(2)若d=|PD﹣PF|.請(qǐng)說明d是否為定值?若是定值,請(qǐng)求出其大;若不是定值,請(qǐng)說明其變化規(guī)律?
(3)求出△PDE周長(zhǎng)取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲乙兩車分別從A、B兩地出發(fā),相向勻速行駛,已知乙車先出發(fā),1小時(shí)后甲車再出發(fā).一段時(shí)間后,甲乙兩車在休息站C地相遇:到達(dá)C地后,乙車不休息繼續(xù)按原速前往A地,甲車休息半小時(shí)后再按原速前往B地,甲車到達(dá)B地停止運(yùn)動(dòng);乙車到A地后立刻原速返回B地,已知兩車間的距離y(km)隨乙車運(yùn)動(dòng)的時(shí)間x(h)變化如圖,則當(dāng)甲車到達(dá)B地時(shí),乙車距離B地的距離為_____(km).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,(),以為直徑畫圓⊙,點(diǎn)為⊙上一動(dòng)點(diǎn).
(1)判斷坐標(biāo)原點(diǎn)是否在⊙上,并說明理由;
(2)若點(diǎn)在第一象限,過點(diǎn)作軸,垂足為,連接,且,當(dāng)時(shí),求線段的長(zhǎng):
(3)若點(diǎn)是的中點(diǎn),試問隨著的變化點(diǎn)的坐標(biāo)是否發(fā)生變化,若不變,求出點(diǎn)的坐標(biāo);若變化,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)A(-4,-1)和B(a,2).
(1)求反比例函數(shù)的解析式和點(diǎn)B的坐標(biāo).
(2)根據(jù)圖象回答,當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx過A(4,0) B(1,3)兩點(diǎn),點(diǎn)C 、B關(guān)于拋物線的對(duì)稱軸對(duì)稱,過點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H
(1)求拋物線的解析式.
(2)直接寫出點(diǎn)C的坐標(biāo),并求出△ABC的面積.
(3)點(diǎn)P是拋物線BA段上一動(dòng)點(diǎn),當(dāng)△ABP的面積為3時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=60°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得△ADE,點(diǎn)C的對(duì)應(yīng)點(diǎn)E恰好落在AB上.
(1)求∠DBC的度數(shù);
(2)當(dāng)BD時(shí),求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸相交于A(-1,0),B(5,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)在第二象限內(nèi)取一點(diǎn)C,作CD垂直x軸于點(diǎn)D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個(gè)單位,當(dāng)點(diǎn)C落在拋物線上時(shí),求m的值;
(3)在(2)的條件下,當(dāng)點(diǎn)C第一次落在拋物線上記為點(diǎn)E,點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn).試探究:在拋物線上是否存在點(diǎn)Q,使以點(diǎn)B、E、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近日,某中學(xué)舉辦了一次以“弘揚(yáng)傳統(tǒng)文化”為主題的漢字聽寫比賽,初一和初二兩個(gè)年級(jí)各有600名學(xué)生參加,為了更好地了解本次比賽成績(jī)的分布情況,學(xué)校分別從兩個(gè)年級(jí)隨機(jī)抽取了若干名學(xué)生的成績(jī)作為樣本進(jìn)行分析,下面是初二年級(jí)學(xué)生成績(jī)樣本的頻數(shù)分布表和頻數(shù)分布直方圖(不完整,每組分?jǐn)?shù)段中的分?jǐn)?shù)包括最低分,不包括最高分)
初二學(xué)生樣本成績(jī)頻數(shù)分布表 | ||
分組/分 | 頻數(shù) | 頻率 |
50~60 | 2 | |
60~70 | 4 | 0.10 |
70~80 | 0.20 | |
80~90 | 14 | 0.35 |
90~100 | ||
合計(jì) | 40 | 1.00 |
請(qǐng)根據(jù)所給信息,解答下列問題:
(1)補(bǔ)全成績(jī)頻數(shù)分布表和頻數(shù)分布直方圖.
(2)若初二學(xué)生成績(jī)樣本中80~90分段的具體成績(jī)?yōu)椋?/span>
80 80 81.5 82 82.5 82.5 83 84.5 85 86.5 87 88 88.5 89
①根據(jù)上述信息,估計(jì)初二學(xué)生成績(jī)的中位數(shù)為__________.
②若初一學(xué)生樣本成績(jī)的中位數(shù)為80,甲同學(xué)在比賽中得到了82分,在他所在的年級(jí)中位居275名,根據(jù)上述信息推斷甲同學(xué)所在年級(jí)為__________(選填“初一”或者“初二”).
③若成績(jī)?cè)?/span>85分及以上均為“優(yōu)秀”,請(qǐng)你根據(jù)抽取的樣本數(shù)據(jù),估計(jì)初二年級(jí)學(xué)生中達(dá)到“優(yōu)秀”的學(xué)生人數(shù)為__________人.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com