【題目】某工廠甲、乙兩車間接到加工一批零件的任務(wù),從開始加工到完成這項任務(wù)共用了9天,乙車間在加工2天后停止加工,引入新設(shè)備后繼續(xù)加工,直到與甲車間同時完成這項任務(wù)為止,設(shè)甲、乙車間各自加工零件總數(shù)為y(件),與甲車間加工時間x(天),y與x之間的關(guān)系如圖(1)所示.由工廠統(tǒng)計數(shù)據(jù)可知,甲車間與乙車間加工零件總數(shù)之差z(件)與甲車間加工時間x(天)的關(guān)系如圖(2)所示.
(1)甲車間每天加工零件為_____件,圖中d值為_____.
(2)求出乙車間在引入新設(shè)備后加工零件的數(shù)量y與x之間的函數(shù)關(guān)系式.
(3)甲車間加工多長時間時,兩車間加工零件總數(shù)為1000件?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料:
對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Nplcr,1550﹣1617年),納皮爾發(fā)明對數(shù)是在指數(shù)書寫方式之前,直到18世紀瑞士數(shù)學(xué)家歐拉(Evlcr,1707﹣1783年)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.
對數(shù)的定義:一般地,若ax=N(a>0,a≠1),那么x叫做以a為底N的對數(shù),記作:x=logaN.比如指數(shù)式24=16可以轉(zhuǎn)化為4=log216,對數(shù)式2=log525可以轉(zhuǎn)化為52=25.
我們根據(jù)對數(shù)的定義可得到對數(shù)的一個性質(zhì):loga(MN)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下:
設(shè)logaM=m,logaN=n,則M=am,N=an
∴MN=aman=am+n,由對數(shù)的定義得m+n=loga(MN)
又∵m+n=logaM+logaN
∴loga(MN)=logaM+logaN
解決以下問題:
(1)將指數(shù)43=64轉(zhuǎn)化為對數(shù)式_____;
(2)證明loga=logaM﹣logaN(a>0,a≠1,M>0,N>0)
(3)拓展運用:計算log32+log36﹣log34=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形BCO是三角形BAO經(jīng)過某種變換得到的.
(1)寫出A,C的坐標;
(2)圖中A與C的坐標之間的關(guān)系是什么?
(3)如果三角形AOB中任意一點M的坐標為(x,y),那么它的對應(yīng)點N的坐標是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABF中,以AB為直徑的圓分別交邊AF、BF于C、E兩點,CD⊥AF.AC是∠DAB的平分線,
(1)求證:直線CD是⊙O的切線.
(2)求證:△FEC是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=BC=4cm,D是AB的中點,以C為圓心,4cm長為半徑作圓,則A,B,C,D四點中,在圓內(nèi)的有( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們學(xué)習(xí)了勾股定理后,都知道“勾三、股四、弦五”.
觀察:3、4、5;5、12、13;7、24、25;9、40、41;…,發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過.
(1)請你根據(jù)上述的規(guī)律寫出下一組勾股數(shù):________.
(2)若第一個數(shù)用字母n(n為奇數(shù),且n≥3)表示,那么后兩個數(shù)用含n的代數(shù)式分別表示為________和________,請用所學(xué)知識說明它們是一組勾股數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC是正三角形,曲線CDEF叫做“正三角形的漸開線”,其中 、 、 圓心依次按A、B、C…循環(huán),它們依次相連接.若AB=1,則曲線CDEF長是(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,AB=AC,BD、CD分別平分∠ABC和∠ACB.問:(答題時,注意書寫整潔)
(1)圖①中有幾個等腰三角形?(寫出來,不需要證明)
(2)過D點作EF∥BC,交AB于E,交AC于F,如圖②,圖中增加了幾個等腰三角形,選一個進行證明.
(3)如圖③,若將題中的△ABC改為不等邊三角形,其他條件不變,圖中有幾個等腰三角形?線段EF與BE、CF有什么關(guān)系?(寫出來,不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是( )
①AD是∠BAC的平分線 ②∠ADC=60°
③點D在AB的垂直平分線上 ④AB=2AC.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com