在“等邊三角形、正方形、等腰梯形、正五邊形、矩形、正六邊形”中,任取其中一個(gè)圖形,恰好是四邊形的概率是   
【答案】分析:先在“等邊三角形、正方形、等腰梯形、正五邊形、矩形、正六邊形”中,找出其中的四邊形,再除以6即可求出答案.
解答:解:∵等邊三角形、正方形、等腰梯形、正五邊形、矩形、正六邊形”中,任取其中一個(gè)圖形,
這6個(gè)圖形出現(xiàn)的機(jī)會(huì)相同,6個(gè)圖形中是四邊形的有正方形,矩形、等腰梯形三個(gè),
∴任取其中一個(gè)圖形,恰好是四邊形的概率是:=
故答案為:
點(diǎn)評(píng):此題考查了概率公式,正確認(rèn)識(shí)四邊形以及理解列舉法求概率是解題的關(guān)鍵.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△OAB是邊長(zhǎng)為2+
3
的等邊三角形,其中O是坐標(biāo)原點(diǎn),頂點(diǎn)B在y軸正方向上,將△OAB折疊,使點(diǎn)A落在邊OB上,記為A′,折痕為EF.
(1)當(dāng)A′E∥x軸時(shí),求點(diǎn)A′和E的坐標(biāo);
(2)當(dāng)A′E∥x軸,且拋物線y=-
1
6
x2+bx+c經(jīng)過(guò)點(diǎn)A′和E時(shí),求拋物線與x軸的交點(diǎn)的坐標(biāo);
(3)當(dāng)點(diǎn)A′在OB上運(yùn)動(dòng),但不與點(diǎn)O、B重合時(shí),能否使△A′EF成為直角三角形?精英家教網(wǎng)若能,請(qǐng)求出此時(shí)點(diǎn)A′的坐標(biāo);若不能,請(qǐng)你說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,△OAB是邊長(zhǎng)為2+
3
的等邊三角形,其中O是坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸的精英家教網(wǎng)正方向上,將△OAB折疊,使點(diǎn)B落在邊OA上,記為B′,折痕為EF.
(1)設(shè)OB′的長(zhǎng)為x,△OB′E的周長(zhǎng)為c,求c關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)B′E∥y軸時(shí),求點(diǎn)B′和點(diǎn)E的坐標(biāo);
(3)當(dāng)B′在OA上運(yùn)動(dòng)但不與O、A重合時(shí),能否使△EB′F成為直角三角形?若能,請(qǐng)求出點(diǎn)B′的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴陽(yáng))如圖,在平面直角坐標(biāo)系中,有一條直線l:y=-
3
3
x+4
與x軸、y軸分別交于點(diǎn)M、N,一個(gè)高為3的等邊三角形ABC,邊BC在x軸上,將此三角形沿著x軸的正方向平移.
(1)在平移過(guò)程中,得到△A1B1C1,此時(shí)頂點(diǎn)A1恰落在直線l上,寫(xiě)出A1點(diǎn)的坐標(biāo)
3
,3)
3
,3)
;
(2)繼續(xù)向右平移,得到△A2B2C2,此時(shí)它的外心P恰好落在直線l上,求P點(diǎn)的坐標(biāo);
(3)在直線l上是否存在這樣的點(diǎn),與(2)中的A2、B2、C2任意兩點(diǎn)能同時(shí)構(gòu)成三個(gè)等腰三角形?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,△OAB是邊長(zhǎng)為2+
3
的等邊三角形,其中O是坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸的正方向上,將△OAB折疊,使點(diǎn)B落在邊OA上,記為B′,折痕為EF.
(1)設(shè)OB′的長(zhǎng)為x,△OB′E的周長(zhǎng)為C,求C關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)B′E∥y軸時(shí),求點(diǎn)B′和點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,若拋物線y=-2x2+bx+c的對(duì)稱軸是直線B′E,且經(jīng)過(guò)原點(diǎn)O,求b、c的值;
(4)當(dāng)B′在OA上運(yùn)動(dòng)但不與O、A重合時(shí),能否使△EB′F成為直角三角形?若能,請(qǐng)求出點(diǎn)B′的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△OAB是邊長(zhǎng)為2+
3
的等邊三角形,其中O是坐標(biāo)原點(diǎn),頂點(diǎn)B在y軸正方向上,將△OAB 折疊,使點(diǎn)A落在邊OB上,記為A′,折痕為EF.
(1)當(dāng)A′E∥x軸時(shí),求點(diǎn)A′和E的坐標(biāo);
(2)當(dāng)A′E∥x軸,且拋物線y=-
1
6
x2+bx+c
經(jīng)過(guò)點(diǎn)A′和E時(shí),求拋物線與x軸的交點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案