如圖,AB是⊙O的直徑,若AC=4,∠D=60°,則AB=    
8

試題分析:根據(jù)圓周角定理可得∠A=∠D=60°,∠ACB=90°,則∠ABC=30°,再根據(jù)含30°的直角三角形的性質(zhì)即可得到結(jié)果.
由題意得∠A=∠D=60°,∠ACB=90°
∴∠ABC=30°
∵AC=4
∴AB=8.
點評:解題的關(guān)鍵是熟記同弧或等弧所對的圓周角相等,直徑所對是圓周角的直角;30°角所對的直角邊等于斜邊的一半.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,一條公路的轉(zhuǎn)彎處是一段圓。▓D中的),點O是這段弧的圓心,C是上一點,OC⊥AB,垂足為D,AB=300m,CD=50m,則這段彎路的半徑是           m.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點O是邊長為8的正方形ABCD邊AD上一個動點(4<OA<8),以O(shè)為圓心、OA長為半徑的圓交邊CD于點M,連接OM,以CM為邊在正方形ABCD內(nèi)部作∠CMN=∠DOM,直線MN交邊BC于點N.

(1)試說明:直線MN是⊙O的切線;
(2)設(shè)DM=x,求OA的長(用含x的代數(shù)式表示);
(3)在點O運動的過程中,設(shè)△CMN的周長為p,試用含x的代數(shù)式表示p,你有什么發(fā)現(xiàn)?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知⊙半徑為3cm,⊙的半徑為7 cm,若⊙和⊙的公共點不超過1個,則兩圓的圓心距不可能為(    ).
A.0 cmB.4 cm C.8 cmD.12 cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點C,AC平分∠DAB.

(1)求證:AD⊥CD;
(2)若AD=2,AC=,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,O1O2=7,⊙O1和⊙O2的半徑分別為2和3,O1O2交⊙O2于點P.若將⊙O 1以每秒60°的速度繞點P順時針方向旋轉(zhuǎn)一周,則⊙O1與⊙O2最后一次相切時的旋轉(zhuǎn)時間為_____________秒

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知:如圖,在⊙O中,AB是直徑,四邊形ABCD內(nèi)接于⊙O,
∠BCD=130°,過D點的切線PD與直線AB交于點P,則∠ADP的度數(shù)為(  )
A.45°B.40°C.50°D.65°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知⊙O的直徑AB⊥弦CD于點E,下列結(jié)論中一定正確的是
A.AE=OEB.CE=DEC.OE=CED.∠AOC=60°

查看答案和解析>>

同步練習冊答案