如圖,任意畫一個(gè)∠A=60º的△ABC,再分別作△ABC的兩條角平分線BE和CD交AB、CE于點(diǎn)D、E,BE和CD交于點(diǎn)P,連結(jié)AP.以下結(jié)論:
①∠BPC=120°;②PD=PE;③BC=BD+CE;④S?PBD+S?PCE=S?PBC ;⑤AD+AE=AP。
其中正確的序號(hào)是 。
①②③④⑤
【解析】
試題分析:解:∵BE、CD分別是∠ABC與∠ACB的角平分線,∠BAC=60°,
∴∠PBC+∠PCB=(180°-∠BAC)=(180°-60°)=60°,
∴∠BPC=180°-(∠PBC+∠PCB)=180°-60°=120°,故①正確;
∵∠BPC=120°,∴∠DPE=120°,
過點(diǎn)P作PF⊥AB,PG⊥AC,PH⊥BC,∵BE、CD分別是∠ABC與∠ACB的角平分線,
∴AP是∠BAC的平分線,PF=PG=PH,
∵∠BAC=60°∠AFP=∠AGP=90°,∴∠FPG=120°,∴∠DPF=∠EPG,在△PFD與△PGE中,
∵
∴△PFD≌△PGE,∴PD=PE,
在Rt△BHP與Rt△BFP中,
∵PF=PH,BP=BP
∴Rt△BHP≌Rt△BFP,同理,Rt△CHP≌Rt△CGP,
∴BH=BD+DF①,CH=CE-GE②,兩式相加得,BH+CH=BD+DF+CE-GE,
∵DF=EG,∴BC=BD+CE,∴S△PBD+S△PCE=S△PBC,故③④正確;
∵AP是∠BAC的平分線,∠BAC=60°,∴∠BAP=∠CAP=30°,
∴AD-DF=AF=AP,AE+EG=AP,
∵DF=EG,∴AD+AE=AP,故⑤正確.
考點(diǎn):全等三角形等
點(diǎn)評(píng):本題難度較大,主要考查的是角平分線的性質(zhì)、全等三角形的判定與性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出全等三角形是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江建德李家鎮(zhèn)初級(jí)中學(xué)八年級(jí)下學(xué)期期中考試數(shù)學(xué)卷(帶解析) 題型:填空題
如圖,任意畫一個(gè)∠A=60º的△ABC,再分別作△ABC的兩條角平分線BE和CD交AB、CE于點(diǎn)D、E,BE和CD交于點(diǎn)P,連結(jié)AP.以下結(jié)論:
①∠BPC=120°;②PD=PE;③BC=BD+CE;④S∆PBD+S∆PCE=S∆PBC ;⑤AD+AE=AP。
其中正確的序號(hào)是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,任意畫一個(gè)∠A=60º的△ABC,再分別作△ABC的兩條角平分線BE和CD交AB、CE于點(diǎn)D、E,BE和CD交于點(diǎn)P,連結(jié)AP.以下結(jié)論:①∠BPC=120°;②PD=PE;③BC=BD+CE;④S∆PBD+S∆PCE=S∆PBC ;⑤AD+AE=AP。其中正確的序號(hào)是 。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com